* Nếu: \(|m|\leq 1\) \(\Rightarrow\) \(\exists\alpha \in \begin{bmatrix}0 ;\pi \end{bmatrix}\) : \(\cos\alpha = m \Rightarrow\cos x =\cos\alpha\)
\( \Leftrightarrow\left[\begin{array}{l}{x =\alpha+k2 \pi} \\ {x=-\alpha+k2 \pi}\end{array}(k \in \mathbb{Z})\right.\)
3 . Phương trình tanx = m
\(\forall m\Rightarrow \exists \alpha \in (\frac{-\pi}{2}; \frac{\pi}{2})\):
\(\tan x = \tan \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in Z} \right)\)
4 . Phương trình cotx = m
\(\forall m\Rightarrow \exists \alpha \in (\frac{-\pi}{2}; \frac{\pi}{2})\):
\(\cot x = \cot \alpha \Leftrightarrow x = \alpha + k\pi \left( {k \in Z} \right)\)