đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":10,"ques":"Trong m\u1eb7t ph\u1eb3ng t\u1ecda \u0111\u1ed9 $Oxy$, cho $A(1; 1)$ v\u00e0 $B(3; 9)$. Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng trung tr\u1ef1c c\u1ee7a \u0111o\u1ea1n th\u1eb3ng $AB$ l\u00e0: ","select":["A. $ y=\\dfrac{1}{4}x+\\dfrac{11}{2}$ ","B. $y=-\\dfrac{1}{4}x+\\dfrac{11}{2}$ ","C. $y=-\\dfrac{1}{4}x-\\dfrac{11}{2}$ ","D. $y=\\dfrac{1}{4}x-\\dfrac{11}{2}$ "],"explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<\/span><br\/><b> B\u01b0\u1edbc 1: <\/b> T\u00ecm ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng $AB$.<br\/><b> B\u01b0\u1edbc 2: <\/b> T\u00ecm trung \u0111i\u1ec3m \u0111o\u1ea1n th\u1eb3ng $AB$.<br\/><b> B\u01b0\u1edbc 3:<\/b> Vi\u1ebft ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng vu\u00f4ng g\u00f3c v\u1edbi $AB$ t\u1ea1i trung \u0111i\u1ec3m \u0111\u00f3.<br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng $AB$ c\u00f3 d\u1ea1ng: $y=ax + b$ <br\/>$A\\left( 1;1 \\right)\\in AB\\Rightarrow a.1+b=1$$\\,\\Leftrightarrow b=1-a\\,\\,\\,\\,\\,\\left( 1 \\right)$ <br\/>$B\\left( 3;9 \\right)\\in AB$$\\,\\Rightarrow 3.a+b=9\\,\\,\\,\\left( 2 \\right)$<br\/>Thay (1) v\u00e0o (2) ta \u0111\u01b0\u1ee3c: $3a+1-a=9\\Leftrightarrow a=4\\Rightarrow b=-3$ <br\/>Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng $AB$: $y= 4x \u2013 3 \\Rightarrow $ c\u00f3 h\u1ec7 s\u1ed1 g\u00f3c $a= 4$.<br\/>G\u1ecdi $(d):\\, y=a'x+b'$ l\u00e0 \u0111\u01b0\u1eddng trung tr\u1ef1c c\u1ee7a $AB$<br\/>$ \\Rightarrow d\\bot AB\\Rightarrow a.a'=-1\\Rightarrow a'=\\dfrac {-1}{4}\\Rightarrow \\left( d \\right):\\,\\,\\,y=-\\dfrac{1}{4}x+b'$ <br\/>G\u1ecdi $H$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a \u0111o\u1ea1n th\u1eb3ng $AB$. <br\/>$\\left\\{ \\begin{align} & {{x}_{H}}=\\dfrac{{{x}_{A}}+{{x}_{B}}}{2} \\\\ & {{y}_{H}}=\\dfrac{{{y}_{A}}+{{y}_{B}}}{2} \\\\ \\end{align} \\right.\\,$$\\Leftrightarrow \\left\\{ \\begin{align} & {{x}_{H}}=\\dfrac{1+3}{2}=2 \\\\ & {{y}_{H}}=\\dfrac{1+9}{2}=5 \\\\ \\end{align} \\right.\\,$$\\Leftrightarrow H\\left( 2;5 \\right)$ <br\/>M\u00e0 $H\\in \\left( d \\right)\\,$$\\Rightarrow 5=-\\dfrac{1}{4}.2+b'\\Leftrightarrow b'=\\dfrac{11}{2}$<br\/>$\\Rightarrow \\left( d \\right):\\,\\,\\,y=-\\dfrac{1}{4}x+\\dfrac{11}{2}$ <br\/><span class='basic_pink'>\u0110\u00e1p \u00e1n l\u00e0 B.<\/span><br\/><b> L\u01b0u \u00fd: <\/b><br\/>+ Hai \u0111\u01b0\u1eddng th\u1eb3ng $y=ax+b$ v\u1edbi ($a\\ne 0$), $y=a'x+b'$ v\u1edbi ($a'\\ne 0$) vu\u00f4ng g\u00f3c v\u1edbi nhau khi $a.a'=-1$.<br\/>+ C\u00f4ng th\u1ee9c trung \u0111i\u1ec3m $M(x_M;y_M)$ c\u1ee7a \u0111o\u1ea1n th\u1eb3ng $AB$ v\u1edbi $A(x_A;y_A)$ v\u00e0 $B(x_B;y_B)$ l\u00e0:<br\/>$\\left\\{ \\begin{align} & {{x}_{M}}=\\dfrac{{{x}_{A}}+{{x}_{B}}}{2} \\\\ & {{y}_{M}}=\\dfrac{{{y}_{A}}+{{y}_{B}}}{2} \\\\ \\end{align} \\right.$<\/span>","column":2}]}],"id_ques":141},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":10,"ques":"Cho hai \u0111\u01b0\u1eddng th\u1eb3ng $\\,(d_{1}):\\,\\,y=3x+5m+2\\,\\,$ v\u00e0 $\\,(d_{2}):\\,\\,y=7x-3m-6$<br\/>T\u1ecda \u0111\u1ed9 giao \u0111i\u1ec3m $A$ c\u1ee7a $\\,(d_{1})\\,$ v\u00e0 $\\,(d_{2})$ l\u00e0:","select":["A. $ A(m-1; 8m - 1)$","B. $A(m+1; 8m + 5)$","C. $ A(2m-2; 11m - 4)$","D. $ A(2m+2; 11m + 8)$"],"explain":"<span class='basic_left'> $\\,(d_{1}):\\,\\,y=3x+5m+2\\,\\,$ c\u00f3 h\u1ec7 s\u1ed1 g\u00f3c $a= 3$<br\/>$\\,(d_{2}):\\,\\,y=7x-3m-6$ c\u00f3 h\u1ec7 s\u1ed1 g\u00f3c $a'=7$<br\/>$\\Rightarrow a \\ne a' \\Rightarrow d_{1}\\cap d_{2}=A (x_{1};y_{1})$<br\/>Ho\u00e0nh \u0111\u1ed9 \u0111i\u1ec3m $A$ l\u00e0 nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh:<br\/>$\\begin{aligned}\\,\\,\\,\\,\\,3x_{1}+5m+2&=7x_{1}-3m-6\\\\ \\Leftrightarrow 4x_{1}&=8m+8\\\\ \\Leftrightarrow \\,\\,\\,x_{1}&=2m+2\\\\ \\end{aligned}$<br\/>$\\Rightarrow y_{1}=11m +8\\,$$ \\Rightarrow A(2m+2; 11m + 8)$ <br\/><span class='basic_pink'>\u0110\u00e1p \u00e1n l\u00e0 D.<\/span>","column":2}]}],"id_ques":142},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":10,"ques":"Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng $(d)$ song song v\u1edbi \u0111\u01b0\u1eddng th\u1eb3ng $x+2y= 1$ v\u00e0 \u0111i qua giao \u0111i\u1ec3m c\u1ee7a hai \u0111\u01b0\u1eddng th\u1eb3ng $\\,(d_{1}):\\,\\,2x-3y=4\\,$ v\u00e0 $\\,(d_{2}):\\,\\,3x+y=5$ c\u00f3 d\u1ea1ng: ","select":["A. $y=\\dfrac{1}{2}x+\\dfrac{15}{22}$","B. $y=-\\dfrac{1}{2}x+\\dfrac{15}{22}$","C. $y=-\\dfrac{1}{2}x-\\dfrac{15}{22}$","D. $y=\\dfrac{1}{2}x-\\dfrac{15}{22}$"],"hint":"T\u00ecm giao \u0111i\u1ec3m c\u1ee7a hai \u0111\u01b0\u1eddng th\u1eb3ng $(d_{1})$ v\u00e0 $(d_{2})$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<br\/><\/span><b>B\u01b0\u1edbc 1: <\/b> T\u00ednh h\u1ec7 s\u1ed1 g\u00f3c c\u1ee7a \u0111\u01b0\u1eddng th\u1eb3ng $(d):\\, y=ax+ b$<br\/><b> B\u01b0\u1edbc 2: <\/b> T\u00ecm t\u1ecda \u0111\u1ed9 giao \u0111i\u1ec3m c\u1ee7a \u0111\u01b0\u1eddng th\u1eb3ng $(d_{1})$ v\u00e0 $(d_{2})$<br\/><b> B\u01b0\u1edbc 3: <\/b> Thay t\u1ecda \u0111\u1ed9 \u0111i\u1ec3m v\u1eeba t\u00ecm \u0111\u01b0\u1ee3c v\u00e0o \u0111\u01b0\u1eddng th\u1eb3ng $(d):\\, y= ax + b$ \u0111\u1ec3 t\u00ecm ra $b$.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>\u0110\u01b0\u1eddng th\u1eb3ng $x+2y=1\\Leftrightarrow y=-\\dfrac{1}{2}x+\\dfrac{1}{2}$ n\u00ean c\u00f3 h\u1ec7 s\u1ed1 g\u00f3c l\u00e0 $-\\dfrac{1}{2}$<br\/>\u0110\u01b0\u1eddng th\u1eb3ng $(d):\\,y=ax+b$ song song v\u1edbi \u0111\u01b0\u1eddng th\u1eb3ng $x+2y=1\\,$$\\Rightarrow \\left( d \\right):\\,\\,y=-\\dfrac{1}{2}x+b\\,\\,\\,\\left( b\\ne \\dfrac{1}{2} \\right)$ <br\/>$\\left( {{d}_{1}} \\right):\\,\\,2x-3y=4\\,$$\\Leftrightarrow \\left( {{d}_{1}} \\right):\\,\\,\\,y=\\dfrac{2}{3}x-\\dfrac{4}{3}$ <br\/>$\\left( {{d}_{2}} \\right):3x+y=5\\,$$\\Leftrightarrow \\,\\left( {{d}_{2}} \\right):\\,\\,\\,y=-3x+5$ <br\/>$\\left( {{d}_{1}} \\right)\\cap \\left( {{d}_{2}} \\right)=M.\\,$ <br\/> Ho\u00e0nh \u0111\u1ed9 giao \u0111i\u1ec3m $M$ l\u00e0 nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh: <br\/>$\\dfrac{2}{3}x-\\dfrac{4}{3}=-3x+5\\,$<br\/>$\\Leftrightarrow x=\\dfrac{19}{11}$<br\/>$\\Rightarrow y=-\\dfrac{2}{11}$ <br\/>$\\Rightarrow M(\\dfrac{19}{11};-\\dfrac{2}{11})$<br\/>V\u00ec $M\\in \\left( d \\right)\\Rightarrow -\\dfrac{2}{11}=-\\dfrac{19}{22}+b\\,$$\\Leftrightarrow b=\\dfrac{15}{22}\\ne \\dfrac{1}{2}$ <br\/>V\u1eady ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng $(d)$ c\u00f3 d\u1ea1ng: $y=-\\dfrac{1}{2}x+\\dfrac{15}{22}$ <br\/><span class='basic_pink'>\u0110\u00e1p \u00e1n l\u00e0 B.<\/span><\/span>","column":2}]}],"id_ques":143},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho hai c\u00e2u","temp":"fill_the_blank","correct":[[["1","-2"],["-2","-1"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":"<span class='basic_left'>Cho \u0111\u01b0\u1eddng th\u1eb3ng $(d):\\,y=(m-2)x+ 3$ $\\,(m\\ne 2)$ v\u00e0 \u0111\u01b0\u1eddng th\u1eb3ng $(d'):\\,y=-m^2x+1$ $\\,(m\\ne 0)$ <\/span><br\/><span class='basic_left'><b> C\u00e2u 1:<\/b> T\u00ecm $m$ \u0111\u1ec3 $d\/\/d'$<br\/><b> \u0110\u00e1p s\u1ed1: <\/b> $m\\in\\,$ {_input_; _input_}<\/span>","explain":" $\\begin{aligned} & d\/\/d'\\Leftrightarrow m-2=-{{m}^{2}} \\\\ & \\Leftrightarrow {{m}^{2}}+m-2\\,\\,\\,\\,\\,\\,\\,\\,\\,=0 \\\\ & \\Leftrightarrow {{m}^{2}}+2m-m-2\\,\\,\\,\\,\\,\\,\\,\\,\\,=0 \\\\ & \\Leftrightarrow m(m+2)-(m+2)\\,\\,\\,\\,\\,\\,\\,\\,\\,=0 \\\\ & \\Leftrightarrow \\left( m-1 \\right)\\left( m+2 \\right)=0 \\\\ & \\Leftrightarrow \\left[ \\begin{aligned} & m-1=0 \\\\ & m+2=0 \\\\ \\end{aligned} \\right. \\\\ & \\Leftrightarrow \\left[ \\begin{aligned} & m=1 \\\\ & m=-2 \\\\ \\end{aligned} \\right. \\\\ \\end{aligned}$<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $1$ v\u00e0 $-2$.<\/span>"}]}],"id_ques":144},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"\u0110\u1ec1 chung cho hai c\u00e2u","temp":"multiple_choice","correct":[[3]],"list":[{"point":10,"ques":"<span class='basic_left'>Cho \u0111\u01b0\u1eddng th\u1eb3ng $(d):\\,y=(m-2)x+ 3$ $\\,(m\\ne 2)$ v\u00e0 \u0111\u01b0\u1eddng th\u1eb3ng $(d'):\\,y=-m^2x+1$ $\\,(m\\ne 0)$ <\/span><br\/><span class='basic_left'><b> C\u00e2u 2:<\/b> T\u00ecm $m$ \u0111\u1ec3 $(d)$ c\u1eaft $Ox$ t\u1ea1i $A$, c\u1eaft $Oy$ t\u1ea1i $B$ m\u00e0 $\\widehat{BAO}={{60}^{0}}$.<\/span> ","select":["A. $m=2-\\sqrt{3}$","B. $m=4- \\sqrt{3}$","C. $m=2\\pm \\sqrt{3}$"],"explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<br\/><\/span><b>B\u01b0\u1edbc 1: <\/b> T\u00ednh t\u1ecda \u0111\u1ed9 $A, B$ theo $m$.<br\/><b> B\u01b0\u1edbc 2: <\/b> D\u1ef1a v\u00e0o \u0111\u1ed3 th\u1ecb \u0111\u1ec3 t\u00ednh $tg\\,\\widehat{BAO}$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai11/lv3/img\/D923_K1.png' \/><\/center>$d\\cap Ox=A\\Rightarrow A\\left( \\dfrac{-3}{m-2};0 \\right);\\,\\,$$\\,\\,\\,\\,OA=\\dfrac{3}{|m-2|} $ <br\/> $ d\\cap Oy=B$ n\u00ean $B$ c\u00f3 ho\u00e0nh \u0111\u1ed9 b\u1eb1ng $0$. <br\/> Do \u0111\u00f3 ta thay $x=0$ v\u00e0o $(d)$: $y=3\\Rightarrow B\\left( 0;\\,\\,3 \\right) $<br\/>X\u00e9t $\\,\\Delta AOB\\,$ c\u00f3: $ \\widehat{BAO}={{60}^{0}}\\Leftrightarrow tg \\,\\widehat{BAO}=\\sqrt{3} $<br\/> $ \\Leftrightarrow \\dfrac{OB}{OA}=\\sqrt{3}\\Leftrightarrow \\dfrac{3}{\\dfrac{3}{|m-2|}}=\\sqrt{3}$$\\,\\,\\Leftrightarrow \\left| m-2 \\right|=\\sqrt{3}\\Leftrightarrow m=2\\pm \\sqrt{3}$<br\/><span class='basic_pink'>\u0110\u00e1p \u00e1n l\u00e0 C.<\/span><\/span>","column":3}]}],"id_ques":145},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":10,"ques":"Trong m\u1eb7t ph\u1eb3ng t\u1ecda \u0111\u1ed9 $Oxy$, cho $A (-5; -1); B(-1; -4); C(3; 2)$. Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng cao xu\u1ea5t ph\u00e1t t\u1eeb \u0111\u1ec9nh $B$ c\u1ee7a tam gi\u00e1c $ABC$ c\u00f3 d\u1ea1ng:","select":["A. $y=-\\dfrac{8}{3}x-\\dfrac{20}{3}$","B. $y=\\dfrac{8}{3}x+\\dfrac{20}{3}$","C. $y=-\\dfrac{8}{3}x+\\dfrac{20}{3}$","D. $y=\\dfrac{8}{3}x-\\dfrac{20}{3}$ "],"hint":"\u0110\u01b0\u1eddng cao $BH$ \u0111i qua $B$ v\u00e0 vu\u00f4ng g\u00f3c v\u1edbi \u0111\u01b0\u1eddng th\u1eb3ng $AC$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<br\/><\/span><b>B\u01b0\u1edbc 1: <\/b> Vi\u1ebft ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng $AC$.<br\/><b> B\u01b0\u1edbc 2: <\/b> K\u1ebb $BH \\bot AC$ t\u1ea1i $H$. Vi\u1ebft ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng cao $BH$ <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng $AC$ c\u00f3 d\u1ea1ng: $y= ax+ b$<br\/>$A(-5; -1)\\in AC\\,\\Rightarrow -5a + b =-1 \\Leftrightarrow b=5a -1\\,\\,\\,\\,(1)$<br\/>$C(3; 2)\\in AC$$\\,\\Rightarrow 3a + b =2 \\,\\,\\,\\,\\,(2)$<br\/>Thay (1) v\u00e0o (2) ta \u0111\u01b0\u1ee3c: $\\,3a + 5a - 1 = 2\\Leftrightarrow a= \\dfrac{3}{8}\\Rightarrow b= \\dfrac{7}{8}$<br\/> Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng $AC:\\,\\,\\,y=\\dfrac{3}{8}x+\\dfrac{7}{8}$<br\/>K\u1ebb $BH \\bot AC$ t\u1ea1i $ H$.<br\/>Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng $BH$ c\u00f3 d\u1ea1ng: $y= a'x + b'$ <br\/>V\u00ec $BH \\bot AC$ n\u00ean $a.a'=-1\\Rightarrow \\dfrac{3}{8}.a'=-1 \\Rightarrow a'= -\\dfrac{8}{3}$<br\/>$B(-1; -4) \\in BH \\Rightarrow a'.(-1)+b'=-4 $$\\,\\Leftrightarrow \\dfrac{8}{3}+b'=-4\\Leftrightarrow b'=-\\dfrac{20}{3}$<br\/>$\\Rightarrow BH : y=-\\dfrac{8}{3}x-\\dfrac{20}{3}$<br\/><span class='basic_pink'>\u0110\u00e1p \u00e1n l\u00e0 A.<\/span><\/span>","column":2}]}],"id_ques":146},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["1"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":"Trong m\u1eb7t ph\u1eb3ng t\u1ecda \u0111\u1ed9 $Oxy$ cho hai \u0111\u01b0\u1eddng th\u1eb3ng $y= 2- 2x$ v\u00e0 $y = x + 3a + 5$ (v\u1edbi $a$ l\u00e0 tham s\u1ed1) c\u1eaft nhau t\u1ea1i \u0111i\u1ec3m $A(x_{o}; y_{o})$ th\u1ecfa m\u00e3n $x_{o}^{2}+y_{o}^{2}=40$. Khi \u0111\u00f3 gi\u00e1 tr\u1ecb nguy\u00ean d\u01b0\u01a1ng c\u1ee7a $a$ l\u00e0 _input_","hint":"T\u00ecm t\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $A$ theo $a$.","explain":" <span class='basic_left'> ${{d}_{1}}\\cap {{d}_{2}}=A.$ <br\/> Ho\u00e0nh \u0111\u1ed9 giao \u0111i\u1ec3m $A$ l\u00e0 nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh: <br\/>$\\begin{aligned} & \\,\\,\\,\\,2-2{{x}_{o}}={{x}_{o}}+3a+5 \\\\ & \\Leftrightarrow 3{{x}_{o}}=-3a-3 \\\\ & \\Leftrightarrow {{x}_{o}}=-a-1 \\\\ & \\Rightarrow {{y}_{o}}=2-2x_o=2+2a+2=2a+4 \\\\ \\end{aligned}$ <br\/>$\\Rightarrow A\\left( -a-1;2a+4 \\right)$ <br\/>Theo \u0111\u1ea7u b\u00e0i ta c\u00f3: <br\/>$\\begin{aligned} & \\,\\,\\,\\,\\,\\,x_{o}^{2}+y_{o}^{2}=40 \\\\ & \\Leftrightarrow {{\\left( -a-1 \\right)}^{2}}+{{\\left( 2a+4 \\right)}^{2}}=40 \\\\ & \\Leftrightarrow {{a}^{2}}+2a+1+4{{a}^{2}}+16a+16=40 \\\\ & \\Leftrightarrow 5{{a}^{2}}+18a-23=0 \\\\ & \\Leftrightarrow 5{{a}^{2}}+23a-5a-23=0\\\\ & \\Leftrightarrow a(5a+23)-(5a+23)=0 \\\\ & \\Leftrightarrow \\left( a-1 \\right)\\left( 5a+23 \\right)=0 \\\\ & \\Leftrightarrow \\left[ \\begin{aligned} & a=1 \\\\ & a=-\\dfrac{23}{5} \\\\ \\end{aligned} \\right. \\\\ \\end{aligned}$ <br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $1$.<\/span><\/span>"}]}],"id_ques":147},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho hai c\u00e2u ","temp":"fill_the_blank","correct":[[["-1"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":"<span class='basic_left'>Cho hai \u0111\u01b0\u1eddng th\u1eb3ng $(d_{1}):\\,y= x+ 2$; $\\,\\,\\,\\,$$(d_{2}):\\,y= 2x + 1$ $\\,\\,\\,\\,$$(d_{3}):\\,y=(m^2+1)x+m$<br\/><b> C\u00e2u 1: <\/b> T\u00ecm gi\u00e1 tr\u1ecb c\u1ee7a $m$ \u0111\u1ec3 th\u00ec $\\, d_{3}\/\/d_{2}$<br\/><b> \u0110\u00e1p s\u1ed1 : <\/b> $m=$ _input_<\/span>","hint":"Cho hai \u0111\u01b0\u1eddng th\u1eb3ng $y= ax + b\\, (d)$ v\u00e0 $y= a'x + b'\\, (d')$, ($\\,a\\ne 0 ;\\,a'\\ne 0\\,$)<br\/>(d) \/\/ (d') $\\,\\Leftrightarrow a= a'; b\\ne b'$","explain":" <span class='basic_left'>\u0110\u1ec3 $\\left( {{d}_{3}} \\right)\/\/\\left( {{d}_{2}} \\right)\\Leftrightarrow \\left\\{ \\begin{aligned} & {{m}^{2}}+1=2 \\\\ & m\\ne 1 \\\\ \\end{aligned} \\right.\\,$$\\Leftrightarrow \\left\\{ \\begin{aligned} & {{m}^{2}}-1=0 \\\\ & m\\ne 1 \\\\ \\end{aligned} \\right.\\,$$\\Leftrightarrow \\left\\{ \\begin{aligned} & \\left[ \\begin{aligned} & m=1 \\\\ & m=-1 \\\\ \\end{aligned} \\right. \\\\ & m\\ne 1 \\\\ \\end{aligned} \\right.\\Leftrightarrow m=-1$ <br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $-1$<\/span><br\/><br\/><span class='basic_green'>L\u01b0u \u00fd: <\/span> H\u1ecdc sinh hay qu\u00ean \u0111i\u1ec1u ki\u1ec7n $\\,b\\ne b'$<\/span><\/span>"}]}],"id_ques":148},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho hai c\u00e2u ","temp":"fill_the_blank","correct":[[["-2"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":"<span class='basic_left'>Cho hai \u0111\u01b0\u1eddng th\u1eb3ng $(d_{1}):\\,y= x+ 2$; $\\,\\,\\,\\,$$(d_{2}):\\,y= 2x + 1$ $\\,\\,\\,\\,$$(d_{3}):\\,y=(m^2+1)x+m$<br\/><b> C\u00e2u 2: <\/b> T\u00ecm c\u00e1c gi\u00e1 tr\u1ecb c\u1ee7a $m$ \u0111\u1ec3 ba \u0111\u01b0\u1eddng th\u1eb3ng tr\u00ean c\u1eaft nhau t\u1ea1i m\u1ed9t \u0111i\u1ec3m. <br\/><b> \u0110\u00e1p s\u1ed1 : <\/b> $m=$ _input_<\/span>","hint":"T\u00ecm giao \u0111i\u1ec3m c\u1ee7a $(d_{1})$ v\u00e0 $(d_{2})$","explain":" <span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<\/span><br\/>B\u01b0\u1edbc 1: T\u00ecm giao \u0111i\u1ec3m c\u1ee7a hai \u0111\u01b0\u1eddng th\u1eb3ng $(d_{1})$ v\u00e0 $(d_{2})$<br\/>B\u01b0\u1edbc 2: Thay t\u1ecda \u0111\u1ed9 \u0111i\u1ec3m v\u1eeba t\u00ecm \u0111\u01b0\u1ee3c v\u00e0o $\\,(d_{3})$ \u0111\u1ec3 t\u00ednh ra $m$.<br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>$d_{1} \\cap d_{2}=A.$ <br\/> Ho\u00e0nh \u0111\u1ed9 giao \u0111i\u1ec3m $A$ l\u00e0 nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh:<br\/>$x+2= 2x +1 \\Leftrightarrow x= 1 \\Rightarrow y=3 $$\\,\\,\\,\\,\\,$$\\Rightarrow A(1;3)$ <br\/>Ba \u0111\u01b0\u1eddng th\u1eb3ng c\u1eaft nhau t\u1ea1i \u0111i\u1ec3m $A(1; 3)$<br\/>$\\left\\{ \\begin{aligned} & d_1 \\text {c\u1eaft}\\,d_3 \\\\ & d_2 \\text {c\u1eaft}\\,d_3 \\\\ & A(1;3)\\in d_3 \\\\ \\end{aligned} \\right.\\,$$\\Leftrightarrow\\left\\{ \\begin{aligned} & {{m}^{2}}+1\\ne 1 \\\\ & {{m}^{2}}+1\\ne 2 \\\\ & \\left( {{m}^{2}}+1 \\right).1+m=3 \\\\ \\end{aligned} \\right.\\,$$\\Leftrightarrow \\left\\{ \\begin{aligned} & {{m}^{2}}\\ne 0 \\\\ & {{m}^{2}}\\ne 1 \\\\ & {{m}^{2}}+m-2=0 \\\\ \\end{aligned} \\right.\\,$ $\\Leftrightarrow \\left\\{ \\begin{aligned} & {{m}^{2}}\\ne 0 \\\\ & {{m}^{2}}\\ne 1 \\\\ & m^2+2m-m-2=0 \\\\ \\end{aligned} \\right.\\,$ $\\Leftrightarrow \\left\\{ \\begin{aligned} & m\\ne 0 \\\\ & m\\ne \\pm 1 \\\\ & \\left( m-1 \\right)\\left( m+2 \\right)=0 \\\\ \\end{aligned} \\right.\\,$$\\Leftrightarrow \\left\\{ \\begin{aligned} & m\\ne 0 \\\\ & m\\ne \\pm 1 \\\\ & \\left[ \\begin{aligned} & m=1 \\\\ & m=-2 \\\\ \\end{aligned} \\right. \\\\ \\end{aligned} \\right.\\Leftrightarrow m=-2$ <br\/>V\u1eady $m =-2$ th\u00ec ba \u0111\u01b0\u1eddng th\u1eb3ng \u0111\u00e3 cho \u0111\u1ed3ng quy<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $-2$.<\/span><br\/><br\/><span class='basic_green'>L\u01b0u \u00fd: <\/span> H\u1ecdc sinh hay qu\u00ean \u0111i\u1ec1u ki\u1ec7n hai \u0111\u01b0\u1eddng th\u1eb3ng c\u1eaft nhau l\u00e0 $\\,a\\ne a'$.<\/span>"}]}],"id_ques":149},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":10,"ques":"G\u1ecdi $\\,\\alpha\\,$ v\u00e0 $\\,\\beta\\,$ l\u1ea7n l\u01b0\u1ee3t l\u00e0 g\u00f3c t\u1ea1o b\u1edfi \u0111\u01b0\u1eddng th\u1eb3ng $\\,y=2x+1\\,$ v\u00e0 $\\,y=x+2$ v\u1edbi tr\u1ee5c $Ox$. Ta c\u00f3:","select":["A. $\\alpha < \\beta < 90^o$","B. $\\alpha > \\beta > 90^o$","C. $\\beta < \\alpha < 90^o$","D. $\\beta = \\alpha < 90^o$ "],"hint":"\u0110\u01b0\u1eddng th\u1eb3ng $y=ax + b\\, (a > 0)$ t\u1ea1o v\u1edbi tia $Ox$ m\u1ed9t g\u00f3c $\\,\\alpha\\,$ th\u00ec $\\,a= tg\\alpha$","explain":"<span class='basic_left'> Do $\\alpha$ l\u00e0 g\u00f3c t\u1ea1o b\u1edfi \u0111\u01b0\u1eddng th\u1eb3ng $y=2x+1$ v\u1edbi tr\u1ee5c $Ox$ <br\/> $\\Rightarrow tg \\, \\alpha=2 \\Rightarrow \\alpha \\approx 63^o43'$<br\/>Do $\\beta$ l\u00e0 g\u00f3c t\u1ea1o b\u1edfi \u0111\u01b0\u1eddng th\u1eb3ng $y=x+2$ v\u1edbi tr\u1ee5c $Ox$<br\/> $\\Rightarrow tg\\,\\beta =1 \\Rightarrow \\beta= 45^o$ <br\/>Suy ra: $\\,\\beta < \\alpha < 90^o$ <br\/><span class='basic_pink'>\u0110\u00e1p \u00e1n l\u00e0 C.<\/span><\/span>","column":2}]}],"id_ques":150}],"lesson":{"save":0,"level":3}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý