đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"X\u00e9t t\u00ednh \u0111\u00fang sai c\u1ee7a c\u00e1c kh\u1eb3ng \u0111\u1ecbnh. ","title_trans":"","temp":"true_false","correct":[["f","t","f","t","f"]],"list":[{"point":5,"image":"","col_name":["","\u0110\u00fang","Sai"],"arr_ques":["\u0110i\u1ec1u ki\u1ec7n \u0111\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh $a{{x}^{2}}+bx+c=0$ c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t l\u00e0 $\\Delta >0$ ","N\u1ebfu ph\u01b0\u01a1ng tr\u00ecnh $a{{x}^{2}}+bx+c=0$ ($a\\ne 0$ ) c\u00f3 $ac<0$ th\u00ec ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t ","N\u1ebfu ph\u01b0\u01a1ng tr\u00ecnh $a{{x}^{2}}+bx+c=0$ ($a\\ne 0$ ) c\u00f3 $c<0$ th\u00ec ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t","N\u1ebfu ph\u01b0\u01a1ng tr\u00ecnh $a{{x}^{2}}+bx+c=0$ ($a\\ne 0$ ) c\u00f3 $ac\\le 0$ th\u00ec ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 nghi\u1ec7m","Ph\u01b0\u01a1ng tr\u00ecnh $a{{x}^{2}}+bx+c=0$ ($a\\ne 0$ ), $\\Delta >0$ c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t ${{x}_{1}}=\\dfrac{-b+\\sqrt{\\Delta }}{2a};{{x}_{2}}=\\dfrac{-b-\\sqrt{\\Delta }}{2a}$ th\u00ec ${{x}_{1}}>{{x}_{2}}$ "],"hint":"","explain":["Sai v\u00ec \u0111i\u1ec1u ki\u1ec7n \u0111\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh $a{{x}^{2}}+bx+c=0$ c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t l\u00e0 ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00f3 ph\u1ea3i l\u00e0 ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai c\u00f3 $\\Delta >0,$ t\u1ee9c $ \\left\\{ \\begin{align} & a\\ne 0 \\\\ & \\Delta >0 \\\\ \\end{align} \\right.$ ","<br\/><span class='basic_left'>\u0110\u00fang v\u00ec n\u1ebfu $ac<0$ th\u00ec $\\Delta ={{b}^{2}}-4ac>0$ n\u00ean ph\u01b0\u01a1ng tr\u00ecnh lu\u00f4n c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t<\/span>","<br\/><span class='basic_left'>Sai v\u00ec ph\u01b0\u01a1ng tr\u00ecnh $-{{x}^{2}}+2x-3=0$ c\u00f3 $c=-3<0$ nh\u01b0ng ph\u01b0\u01a1ng tr\u00ecnh n\u00e0y v\u00f4 nghi\u1ec7m<\/span>","<br\/><span class='basic_left'>\u0110\u00fang v\u00ec n\u1ebfu $ac\\le 0$ m\u00e0 $a\\ne 0$, ta c\u0169ng c\u00f3 $\\Delta \\ge 0$ n\u00ean ph\u01b0\u01a1ng tr\u00ecnh $a{{x}^{2}}+bx+c=0$ c\u00f3 nghi\u1ec7m.<\/span>","<br\/><span class='basic_left'>Sai v\u00ec v\u1edbi $a<0$ th\u00ec ${{x}_{1}}<{{x}_{2}}$ v\u00e0 kh\u1eb3ng \u0111\u1ecbnh tr\u00ean ch\u1ec9 \u0111\u00fang khi $a>0$ <\/span>"]}]}],"id_ques":841},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":"Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh: $\\left( 2x-1 \\right)\\left( x-2 \\right)=5$ <br\/>Ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 t\u1eadp nghi\u1ec7m l\u00e0 ","select":["A. $S=\\left\\{ 3;-2 \\right\\}$ ","B. $S=\\left\\{ 3; \\dfrac{1}{2} \\right\\}$","C. $S=\\left\\{3; -\\dfrac{1}{2} \\right\\}$","D. $S=\\left\\{ 2;-3\\right\\}$"],"hint":"Bi\u1ebfn \u0111\u1ed5i \u0111\u01b0a ph\u01b0\u01a1ng tr\u00ecnh v\u1ec1 d\u1ea1ng t\u1ed5ng qu\u00e1t c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai","explain":"<span class='basic_left'>Ta c\u00f3:<br\/> $\\begin{aligned} & \\left( 2x-1 \\right)\\left( x-2 \\right)=5 \\\\ & \\Leftrightarrow 2{{x}^{2}}-4x-x+2=5 \\\\ & \\Leftrightarrow 2{{x}^{2}}-5x-3=0 \\\\ \\end{aligned}$<br\/>Ta c\u00f3 $a=2; b=-5;c=-3$<br\/>$\\Delta ={{\\left( -5 \\right)}^{2}}-4.2.\\left( -3 \\right)=49 >0$<br\/>Ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t ${{x}_{1}}=\\dfrac{5+7}{4}=3;{{x}_{2}}=\\dfrac{5-7}{4}=-\\dfrac{1}{2}$ <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 C <\/span><\/span>","column":2}]}],"id_ques":842},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":"Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh: ${{x}^{2}}+\\left( \\sqrt{2}+\\sqrt{3} \\right)x+\\sqrt{6}=0$ <br\/>Ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 t\u1eadp nghi\u1ec7m l\u00e0 ","select":["A. $S=\\left\\{ -\\sqrt{2};\\sqrt{3} \\right\\}$ ","B. $S=\\left\\{ -\\sqrt{2};-\\sqrt{3} \\right\\}$","C. $S=\\left\\{ \\sqrt{2};\\sqrt{3} \\right\\}$","D. $S=\\left\\{ \\sqrt{2};-\\sqrt{3} \\right\\}$"],"hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn: <\/span><br\/>Ph\u01b0\u01a1ng ph\u00e1p gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai b\u1eb1ng c\u00f4ng th\u1ee9c nghi\u1ec7m:<br\/>B\u01b0\u1edbc 1: X\u00e1c \u0111\u1ecbnh h\u1ec7 s\u1ed1 $a, b, c$ <br\/>B\u01b0\u1edbc 2: T\u00ednh $\\Delta $ <br\/>B\u01b0\u1edbc 3: \u00c1p d\u1ee5ng c\u00f4ng th\u1ee9c nghi\u1ec7m ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai \u0111\u1ec3 t\u00ecm nghi\u1ec7m.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ta c\u00f3 $a=1;b=\\sqrt{2}+\\sqrt{3}$ ; $c=\\sqrt{6}$<br\/> $\\begin{align} & \\Delta ={{\\left( \\sqrt{2}+\\sqrt{3} \\right)}^{2}}-4\\sqrt{6} \\\\ & \\,\\,\\,\\,\\,=5+2\\sqrt{6}-4\\sqrt{6} \\\\ & \\,\\,\\,\\,\\,=5-2\\sqrt{6} \\\\ & \\,\\,\\,\\,={{\\left( \\sqrt{2}-\\sqrt{3} \\right)}^{2}} \\\\ \\end{align}$ <br\/>Suy ra $\\sqrt{\\Delta }=\\sqrt{3}-\\sqrt{2}$ <br\/>V\u00ec $\\Delta >0$ n\u00ean ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t l\u00e0 <br\/>${{x}_{1}}=\\dfrac{-\\left( \\sqrt{2}+\\sqrt{3} \\right)+\\left( \\sqrt{3}-\\sqrt{2} \\right)}{2}=-\\sqrt{2}$ ;<br\/>${{x}_{2}}=\\dfrac{-\\left( \\sqrt{2}+\\sqrt{3} \\right)-\\left( \\sqrt{3}-\\sqrt{2} \\right)}{2}=-\\sqrt{3}$<br\/>V\u1eady t\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh l\u00e0 $S=\\left\\{ -\\sqrt{2};-\\sqrt{3} \\right\\}$ <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 B <\/span><\/span>","column":2}]}],"id_ques":843},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":"Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh: $\\left( 5-\\sqrt{2} \\right){{x}^{2}}-10x+5+\\sqrt{2}=0$ <br\/>Gi\u00e1 tr\u1ecb n\u00e0o kh\u00f4ng l\u00e0 nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh:","select":["A. $\\dfrac{27+10\\sqrt{2}}{23}$ ","B. $\\dfrac{25+10\\sqrt{2}}{23}$","C. $1$"],"hint":"Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh v\u00e0 lo\u1ea1i gi\u00e1 tr\u1ecb kh\u00f4ng ph\u1ea3i l\u00e0 nghi\u1ec7m.","explain":"<span class='basic_left'>Ta c\u00f3 $a=5-\\sqrt{2};b'=-5;c=5+\\sqrt{2}$ <br\/>$\\begin{align}<br\/> & \\Delta '={{5}^{2}}-\\left( 5-\\sqrt{2} \\right)\\left( 5+\\sqrt{2} \\right) \\\\ & \\,\\,\\,\\,\\,=25-\\left[ 25-{{\\left( \\sqrt{2} \\right)}^{2}} \\right] \\\\ & \\,\\,\\,\\,\\,=2 \\\\ \\end{align}$ <br\/>V\u00ec $\\Delta '>0$ n\u00ean ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t l\u00e0<br\/>$\\begin{align} & {{x}_{1}}=\\dfrac{5+\\sqrt{2}}{5-\\sqrt{2}}=\\dfrac{{{\\left( 5+\\sqrt{2} \\right)}^{2}}}{25-2}=\\dfrac{27+10\\sqrt{2}}{23}; \\\\ & {{x}_{2}}=\\dfrac{5-\\sqrt{2}}{5-\\sqrt{2}}=1 \\\\ \\end{align}$ <br\/>Suy ra $x=\\dfrac{25+10\\sqrt{2}}{23}$ kh\u00f4ng l\u00e0 nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n ch\u1ecdn l\u00e0 B <\/span><\/span>","column":3}]}],"id_ques":844},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":"C\u1eb7p s\u1ed1 ${{x}_{1}}=2$ v\u00e0 ${{x}_{2}}=5$ kh\u00f4ng l\u00e0 nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh ","select":["A.${{x}^{2}}-7x+10=0$ ","B. $\\left( x-2 \\right)\\left( x-5 \\right)=0$ ","C. ${{x}^{2}}+7x+10=0$ ","D. $-{{x}^{2}}+7x-10=0$"],"hint":"C\u1eb7p s\u1ed1 $a;b$ l\u00e0 nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai $(x-a)(x-b)=0$","explain":"<span class='basic_left'>C\u1eb7p s\u1ed1 ${{x}_{1}}=2$ v\u00e0 ${{x}_{2}}=5$ l\u00e0 nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh<br\/>$\\begin{align} & \\left( x-2 \\right)\\left( x-5 \\right)=0 \\\\ & \\Leftrightarrow {{x}^{2}}-7x+10=0 \\\\ & \\Leftrightarrow -{{x}^{2}}+7x-10=0 \\\\ \\end{align}$ <br\/>X\u00e9t ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}+7x+10=0$ <br\/>$\\begin{aligned} & \\Leftrightarrow \\left( x+2 \\right)\\left( x+5 \\right)=0 \\\\ & \\Leftrightarrow \\left[ \\begin{aligned} & x+2=0 \\\\ & x+5=0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left[ \\begin{aligned} & x=-2 \\\\ & x=-5 \\\\ \\end{aligned} \\right. \\\\ \\end{aligned}$<br\/>Suy ra c\u1eb7p s\u1ed1 ${{x}_{1}}=2$ v\u00e0 ${{x}_{2}}=5$ <b>kh\u00f4ng l\u00e0 <\/b> nghi\u1ec7m ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}+7x+10=0$<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n ch\u1ecdn l\u00e0 C<\/span><\/span>","column":2}]}],"id_ques":845},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"\u0110i\u1ec1n nghi\u1ec7m d\u01b0\u1edbi d\u1ea1ng s\u1ed1 nguy\u00ean ho\u1eb7c s\u1ed1 th\u1eadp ph\u00e2n","temp":"fill_the_blank_random","correct":[[["0,5"],["-3"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","ques":"Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh: $\\left( x-3 \\right)\\left( x+3 \\right)+x\\left( x+5 \\right)+6=0$ <br\/>T\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh l\u00e0 $S=${_input_;_input_}","hint":"","explain":"<span class='basic_left'>Ta c\u00f3:<br\/> $\\begin{aligned} & \\left( x-3 \\right)\\left( x+3 \\right)+x\\left( x+5 \\right)+6=0 \\\\ & \\Leftrightarrow {{x}^{2}}-9+{{x}^{2}}+5x+6=0 \\\\ & \\Leftrightarrow 2{{x}^{2}}+5x-3=0 \\\\ \\end{aligned}$<br\/>Ta c\u00f3 $a=2; b=5;c=-3$<br\/>$\\begin{aligned} & \\Delta ={{5}^{2}}-4.2.\\left( -3 \\right)=49>0 \\\\ & \\Rightarrow \\sqrt{\\Delta }=7 \\\\ \\end{aligned}$<br\/>Ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t ${{x}_{1}}=\\dfrac{-5+7}{4}=\\dfrac{1}{2};{{x}_{2}}=\\dfrac{-5-7}{4}=-3$ <br\/>V\u1eady t\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh l\u00e0 $S=\\left\\{ \\dfrac{1}{2};-3 \\right\\}$ <br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $0,5$ v\u00e0 $-3$ <\/span><\/span>"}]}],"id_ques":846},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"select":["A. $\\dfrac{1}{2}$","B. $\\dfrac{1}{3}$","C. $\\dfrac{1}{4}$"],"ques":"Ph\u01b0\u01a1ng tr\u00ecnh $2{{x}^{2}}-\\left( m+4 \\right)x+m=0$ c\u00f3 m\u1ed9t nghi\u1ec7m b\u1eb1ng $3.$<br\/>Nghi\u1ec7m c\u00f2n l\u1ea1i l\u00e0 ?","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>B\u01b0\u1edbc 1: Thay $x=3$ v\u00e0o ph\u01b0\u01a1ng tr\u00ecnh \u0111\u1ec3 t\u00ecm $m$. <br\/>B\u01b0\u1edbc 2: V\u1edbi $m$ v\u1eeba t\u00ecm \u0111\u01b0\u1ee3c, ta gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh t\u00ecm nghi\u1ec7m c\u00f2n l\u1ea1i.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/>Ph\u01b0\u01a1ng tr\u00ecnh $2{{x}^{2}}-\\left( m+4 \\right)x+m=0$ c\u00f3 m\u1ed9t nghi\u1ec7m b\u1eb1ng $3$ n\u00ean ta c\u00f3:<br\/>$\\begin{align} & {{2.3}^{2}}-\\left( m+4 \\right).3+m=0 \\\\ & \\Leftrightarrow 18-3m-12+m=0 \\\\ & \\Leftrightarrow -2m+6=0 \\\\ & \\Leftrightarrow m=3 \\\\ \\end{align}$<br\/> V\u1edbi $m=3, $ ta c\u00f3 ph\u01b0\u01a1ng tr\u00ecnh: $2{{x}^{2}}-7x+3=0$<br\/> $\\Delta ={{\\left( -7 \\right)}^{2}}-4.2.3=25 >0$<br\/>Khi \u0111\u00f3 ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t l\u00e0<br\/> ${{x}_{1}}=\\dfrac{7+5}{4}=3;{{x}_{2}}=\\dfrac{7-5}{4}=\\dfrac{1}{2}$ <br\/>V\u1eady nghi\u1ec7m c\u00f2n l\u1ea1i c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh l\u00e0 $x=\\dfrac{1}{2}$ <\/span>"}]}],"id_ques":847},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":"Cho ph\u01b0\u01a1ng tr\u00ecnh: ${{\\left( {{x}^{2}}+2x-5 \\right)}^{2}}={{\\left( {{x}^{2}}-x+5 \\right)}^{2}}$ <br\/>Ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00e3 cho c\u00f3 bao nhi\u00eau nghi\u1ec7m?","select":["A. $0$ ","B. $1$","C. $2$","D. $3$"],"hint":"Chuy\u1ec3n v\u1ebf v\u00e0 \u00e1p d\u1ee5ng h\u1eb1ng \u0111\u1eb3ng th\u1ee9c $a^2-b^2$","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\begin{aligned} & {{\\left( {{x}^{2}}+2x-5 \\right)}^{2}}={{\\left( {{x}^{2}}-x+5 \\right)}^{2}} \\\\ & \\Leftrightarrow {{\\left( {{x}^{2}}+2x-5 \\right)}^{2}}-{{\\left( {{x}^{2}}-x+5 \\right)}^{2}}=0 \\\\ & \\Leftrightarrow \\left( {{x}^{2}}+2x-5+{{x}^{2}}-x+5 \\right)\\left( {{x}^{2}}+2x-5-{{x}^{2}}+x-5 \\right)=0 \\\\ & \\Leftrightarrow \\left( 2{{x}^{2}}+x \\right)\\left( 3x-10 \\right)=0 \\\\ & \\Leftrightarrow x\\left( 2x+1 \\right)\\left( 3x-10 \\right)=0 \\\\ & \\Leftrightarrow \\left[ \\begin{aligned} & x=0 \\\\ & 2x+1=0 \\\\ & 3x-10=0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left[ \\begin{aligned} & x=0 \\\\ & x=-\\dfrac{1}{2} \\\\ & x=\\dfrac{10}{3} \\\\ \\end{aligned} \\right. \\\\ \\end{aligned}$<br\/>V\u1eady t\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh l\u00e0 $S=\\left\\{0;-\\dfrac{1}{2};\\dfrac{10}{3}\\right\\}$<br\/>Do \u0111\u00f3 ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00e3 cho c\u00f3 3 nghi\u1ec7m <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 D <\/span><\/span>","column":4}]}],"id_ques":848},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u (<,>,=) th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[[">"]]],"list":[{"point":5,"width":60,"type_input":"","ques":"<span class='basic_left'> Khi $a>0$ v\u00e0 ph\u01b0\u01a1ng tr\u00ecnh $a{{x}^{2}}+bx+c=0$ v\u00f4 nghi\u1ec7m th\u00ec $a{{x}^{2}}+bx+c$ _input_ $0$ v\u1edbi m\u1ecdi $x.$ ","hint":"Bi\u1ebfn \u0111\u1ed5i $a{{x}^{2}}+bx+c$ v\u1ec1 d\u1ea1ng $a{{\\left( x+\\dfrac{b}{2a} \\right)}^{2}}-\\dfrac{{{b}^{2}}-4ac}{4a}$","explain":"<span class='basic_left'>Ta c\u00f3 $a{{x}^{2}}+bx+c=a{{\\left( x+\\dfrac{b}{2a} \\right)}^{2}}-\\dfrac{{{b}^{2}}-4ac}{4a}$<br\/>Ph\u01b0\u01a1ng tr\u00ecnh $a{{x}^{2}}+bx+c=0$ v\u00f4 nghi\u1ec7m th\u00ec $\\Delta <0\\Leftrightarrow {{b}^{2}}-4ac<0$ <br\/>M\u00e0 $a>0$ n\u00ean $\\dfrac{{{b}^{2}}-4ac}{4a}<0\\Leftrightarrow -\\dfrac{{{b}^{2}}-4ac}{4a}>0$ <br\/>L\u1ea1i c\u00f3 $a{{\\left( x+\\dfrac{b}{2a} \\right)}^{2}}\\ge 0$ v\u1edbi m\u1ecdi $a>0$<br\/>N\u00ean $a{{x}^{2}}+bx+c=a{{\\left( x+\\dfrac{b}{2a} \\right)}^{2}}-\\dfrac{{{b}^{2}}-4ac}{4a}>0$ v\u1edbi m\u1ecdi $x.$<br\/><span class='basic_pink'>V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $>.$ <\/span><\/span>"}]}],"id_ques":849},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":"\u0110\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh $5m{{x}^{2}}-4x-3m=0$ c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t th\u00ec ","select":["A. $m>0$ ","B. $m<0$ ","C. $m \\ne 0$ ","D. $m=0$ "],"hint":"Ph\u01b0\u01a1ng tr\u00ecnh $ax^2+bx+c=0$ c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t $\\Leftrightarrow \\left\\{ \\begin{aligned} & a\\ne 0 \\\\ & \\Delta >0 \\\\ \\end{aligned} \\right.$ ","explain":"<span class='basic_left'>Ph\u01b0\u01a1ng tr\u00ecnh $5m{{x}^{2}}-4x-3m=0$ c\u00f3 h\u1ec7 s\u1ed1 $a=5m;b\u2019=-2;c=-3m$<br\/>$\\Delta '={{\\left( -2 \\right)}^{2}}-5m.\\left( -3m \\right)=4+15{{m}^{2}}$<br\/>Ph\u01b0\u01a1ng tr\u00ecnh $5m{{x}^{2}}-4x-3m=0$ c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t $\\Leftrightarrow \\left\\{ \\begin{aligned} & a\\ne 0 \\\\ & \\Delta >0 \\\\ \\end{aligned} \\right.$<br\/>$\\Leftrightarrow \\left\\{ \\begin{aligned} & 5m\\ne 0 \\\\ & 4+15{{m}^{2}}>0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & m\\ne 0 \\\\ & 4+15{{m}^{2}}>0 \\,\\forall m \\\\ \\end{aligned} \\right.\\Leftrightarrow m\\ne 0$<br\/> V\u1eady $m\\ne 0$ th\u00ec ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t<br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 C<\/span><br\/><span class='basic_green'>Sai l\u1ea7m th\u01b0\u1eddng m\u1eafc ph\u1ea3i:<\/span> C\u00e1c em th\u01b0\u1eddng qu\u00ean \u0111i\u1ec1u ki\u1ec7n $a \\ne 0$<\/span>","column":4}]}],"id_ques":850},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":"Ph\u01b0\u01a1ng tr\u00ecnh ${{m}^{2}}{{x}^{2}}+mx+4=0$ (1) v\u00f4 nghi\u1ec7m v\u1edbi m\u1ecdi $m \\ne 0,$ <b>\u0111\u00fang<\/b> hay <b>sai<\/b>?","select":["A. \u0110\u00fang","B. Sai"],"hint":"X\u00e9t hai tr\u01b0\u1eddng h\u1ee3p $m=0$ v\u00e0 $m\\ne 0$ ","explain":"<span class='basic_left'>Tr\u01b0\u1eddng h\u1ee3p 1: $m=0.$ Khi \u0111\u00f3 $\\left( 1 \\right)\\Leftrightarrow 4=0$ (kh\u00f4ng t\u1ed3n t\u1ea1i). <br\/>Suy ra ph\u01b0\u01a1ng tr\u00ecnh v\u00f4 nghi\u1ec7m.<br\/>Tr\u01b0\u1eddng h\u1ee3p 2: $m\\ne 0$. Khi \u0111\u00f3 ph\u01b0\u01a1ng tr\u00ecnh (1) v\u00f4 nghi\u1ec7m $\\Leftrightarrow \\Delta <0\\Leftrightarrow {{\\left( -m \\right)}^{2}}-4.{{m}^{2}}.4<0\\Leftrightarrow -15{{m}^{2}}<0\\Leftrightarrow m\\ne 0$ <br\/>T\u1eeb hai tr\u01b0\u1eddng h\u1ee3p, ta c\u00f3 ph\u01b0\u01a1ng tr\u00ecnh v\u00f4 nghi\u1ec7m v\u1edbi m\u1ecdi $m.$<br\/>Suy ra kh\u1eb3ng \u0111\u1ecbnh b\u00e0i to\u00e1n l\u00e0 sai.<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n ch\u1ecdn l\u00e0 B<\/span><\/span>","column":2}]}],"id_ques":851},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["2"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","ques":"Cho ph\u01b0\u01a1ng tr\u00ecnh: $\\left( {{m}^{2}}-m-2 \\right){{x}^{2}}+2\\left( m+1 \\right)x+1=0$ v\u1edbi $m$ l\u00e0 tham s\u1ed1.<br\/>T\u00ecm c\u00e1c gi\u00e1 tr\u1ecb c\u1ee7a $m$ \u0111\u1ec3 t\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh ch\u1ec9 c\u00f3 m\u1ed9t ph\u1ea7n t\u1eed<br\/><b>\u0110\u00e1p s\u1ed1:<\/b> $m=$_input_ ","hint":"T\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh ch\u1ec9 c\u00f3 m\u1ed9t ph\u1ea7n t\u1eed khi v\u00e0 ch\u1ec9 khi ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00e3 cho c\u00f3 1 nghi\u1ec7m ho\u1eb7c c\u00f3 nghi\u1ec7m k\u00e9p.","explain":"<span class='basic_left'>- X\u00e9t $m^2-m-2=0$<br\/>$\\Leftrightarrow \\left( m+1 \\right)\\left( m-2 \\right)=0\\Leftrightarrow \\left[ \\begin{aligned} & m=-1 \\\\ & m=2 \\\\ \\end{aligned} \\right.$ <br\/>+ V\u1edbi $m=-1,$ ta c\u00f3 ph\u01b0\u01a1ng tr\u00ecnh $0x+1=0$ <br\/>Ph\u01b0\u01a1ng tr\u00ecnh v\u00f4 nghi\u1ec7m<br\/>+ V\u1edbi $m=2,$ ta c\u00f3 ph\u01b0\u01a1ng tr\u00ecnh $6x+1=0\\Leftrightarrow x=-\\dfrac{1}{6}$ <br\/>Suy ra ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 m\u1ed9t nghi\u1ec7m $x=-\\dfrac{1}{6}$ <br\/>- X\u00e9t ${{m}^{2}}-m-2\\ne 0\\Leftrightarrow \\left\\{ \\begin{aligned} & m\\ne -1 \\\\ & m\\ne 2 \\\\ \\end{aligned} \\right.$ <br\/>Khi \u0111\u00f3 ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 nghi\u1ec7m k\u00e9p n\u1ebfu $\\Delta '=0\\Leftrightarrow {{\\left( m+1 \\right)}^{2}}-\\left( {{m}^{2}}-m-2 \\right)=0$ <br\/> $\\begin{aligned} & \\Leftrightarrow {{m}^{2}}+2m+1-{{m}^{2}}+m+2=0 \\\\ & \\Leftrightarrow 3m+3=0 \\\\ \\end{aligned}$ <br\/>$\\Leftrightarrow m=-1$ (lo\u1ea1i v\u00ec $m\\ne -1$)<br\/>V\u1eady $m=2$ th\u00ec t\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh ch\u1ec9 c\u00f3 1 ph\u1ea7n t\u1eed.<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $2.$<\/span>"}]}],"id_ques":852},{"time":24,"part":[{"time":3,"title":"Cho ph\u01b0\u01a1ng tr\u00ecnh $m{{x}^{2}}+6\\left( m-2 \\right)x+4m-7=0$ ","title_trans":"N\u1ed1i c\u00e2u \u1edf c\u1ed9t b\u00ean tr\u00e1i v\u1edbi c\u00e2u \u1edf c\u1ed9t b\u00ean ph\u1ea3i \u0111\u1ec3 \u0111\u01b0\u1ee3c kh\u1eb3ng \u0111\u1ecbnh \u0111\u00fang","audio":"","temp":"matching","correct":[["3","4","2","1"]],"list":[{"point":5,"image":"","left":["Ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 nghi\u1ec7m k\u00e9p khi","Ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t khi ","Ph\u01b0\u01a1ng tr\u00ecnh v\u00f4 nghi\u1ec7m khi ","Ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 nghi\u1ec7m l\u00e0 $x=-\\dfrac{7}{12}$ khi "],"right":["a. $m=0$ ","b. $ \\dfrac{9}{5} < m <4 $ ","c. $m=4$ ho\u1eb7c $m=\\dfrac{9}{5}$ ","d. $m>4$ ho\u1eb7c $m<\\dfrac{9}{5}$v\u00e0 $m \\ne 0$"],"top":60,"hint":"","explain":"<span class='basic_left'> X\u00e9t $m{{x}^{2}}+6\\left( m-2 \\right)x+4m-7=0$ (1)<br\/>Tr\u01b0\u1eddng h\u1ee3p 1: $m=0.$<br\/> Khi \u0111\u00f3: $\\left( 1 \\right)\\Leftrightarrow -12x-7=0\\Leftrightarrow x=-\\dfrac{7}{12}$ <br\/>V\u1eady ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 nghi\u1ec7m l\u00e0 $x=-\\dfrac{7}{12}$ khi $m=0$<br\/>Tr\u01b0\u1eddng h\u1ee3p 2: $m\\ne 0$ <br\/>$a=m\\ne 0;b'=3\\left( m-2 \\right);c=4m-7$ <br\/>$\\begin{align} & \\Delta '=9{{\\left( m-2 \\right)}^{2}}-m\\left( 4m-7 \\right) \\\\ & \\,\\,\\,\\,\\,\\,\\,=9\\left( {{m}^{2}}-4m+4 \\right)-4{{m}^{2}}+7m \\\\ & \\,\\,\\,\\,\\,\\,\\,=5{{m}^{2}}-29m+36 \\\\ & \\,\\,\\,\\,\\,\\,\\,=\\left( m-4 \\right)\\left( 5m-9 \\right) \\\\ \\end{align}$ <br\/>Ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 nghi\u1ec7m k\u00e9p $\\Leftrightarrow \\Delta '=0\\Leftrightarrow \\left[ \\begin{align} & m=4 \\\\ & m=\\dfrac{9}{5} \\\\ \\end{align} \\right.$ (th\u1ecfa m\u00e3n $m\\ne 0$)<br\/>Ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t $\\Leftrightarrow \\Delta '>0\\Leftrightarrow \\left[ \\begin{aligned} & m>4 \\\\ & m<\\dfrac{9}{5} \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left[ \\begin{aligned} & m>4 \\\\ & m<\\dfrac{9}{5}\\,\\,\\,\\,\\,\\,\\left( m\\ne 0 \\right) \\\\ \\end{aligned} \\right.$<br\/>Ph\u01b0\u01a1ng tr\u00ecnh v\u00f4 nghi\u1ec7m $ \\Leftrightarrow \\Delta '<0 \\Leftrightarrow \\dfrac{9}{5} < m < 4 $ <br\/><span class='basic_pink'>V\u1eady 1 n\u1ed1i v\u1edbi c, 2 n\u1ed1i v\u1edbi d, 3 n\u1ed1i b v\u00e0 4 n\u1ed1i v\u1edbi a.<\/span><\/span>"}]}],"id_ques":853},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":"T\u00ecm gi\u00e1 tr\u1ecb c\u1ee7a $m$ \u0111\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh sau c\u00f3 nghi\u1ec7m k\u00e9p: <br\/>${{m}^{2}}{{x}^{2}}-mx-2=0$ ","select":["A. $m=0$","B. $m \\ne 0$","C. V\u1edbi m\u1ecdi $m$","D. Kh\u00f4ng c\u00f3 gi\u00e1 tr\u1ecb n\u00e0o c\u1ee7a $m$"],"hint":"Ph\u01b0\u01a1ng tr\u00ecnh $ ax^2+bx+c=0 $ c\u00f3 nghi\u1ec7m k\u00e9p $\\Leftrightarrow \\left\\{ \\begin{aligned} & a\\ne 0 \\\\ & \\Delta =0 \\\\ \\end{aligned} \\right.$","explain":"<span class='basic_left'>Ph\u01b0\u01a1ng tr\u00ecnh ${{m}^{2}}{{x}^{2}}-mx-2=0$ c\u00f3 nghi\u1ec7m k\u00e9p $\\Leftrightarrow \\left\\{ \\begin{aligned} & a\\ne 0 \\\\ & \\Delta =0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & {{m}^{2}}\\ne 0 \\\\ & {{m}^{2}}-4.{{m}^{2}}.\\left( -2 \\right)=0 \\\\ \\end{aligned} \\right.$<br\/> $\\Leftrightarrow \\left\\{ \\begin{aligned} & m\\ne 0 \\\\ & 9{{m}^{2}}=0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & m\\ne 0 \\\\ & m=0 \\\\ \\end{aligned} \\right.$ (kh\u00f4ng x\u1ea3y ra)<br\/>V\u1eady kh\u00f4ng c\u00f3 gi\u00e1 tr\u1ecb n\u00e0o c\u1ee7a $m$ \u0111\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00e3 cho c\u00f3 nghi\u1ec7m k\u00e9p.<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n ch\u1ecdn l\u00e0 D<\/span><\/span>","column":2}]}],"id_ques":854},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":"Ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}-\\left( 3{{m}^{2}}-5m+1 \\right)x-\\left( {{m}^{2}}-4m+5 \\right)=0$ lu\u00f4n c\u00f3 nghi\u1ec7m v\u1edbi m\u1ecdi $m,$ <b>\u0111\u00fang<\/b> hay <b>sai<\/b>?","select":["A. \u0110\u00fang","B. Sai"],"hint":"X\u00e9t d\u1ea5u t\u00edch $ac.$","explain":"<span class='basic_left'><span class='basic_green'>Ph\u01b0\u01a1ng ph\u00e1p ch\u1ee9ng minh ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai $ax^2+bx+c=0$ c\u00f3 nghi\u1ec7m<\/span><br\/>C\u00e1ch 1: Ch\u1ee9ng minh $\\Delta \\ge 0$<br\/>C\u00e1ch 2: Ch\u1ee9ng t\u1ecf $ac<0$.<br\/>\u1ede b\u00e0i to\u00e1n n\u00e0y n\u1ebfu l\u00e0m theo c\u00e1ch 1 th\u00ec t\u00ednh $\\Delta$ kh\u00e1 ph\u1ee9c t\u1ea1p n\u00ean ta th\u1eed d\u00f9ng c\u00e1ch 2.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/> X\u00e9t t\u00edch $ac=-(m^2-4m+5)=-(m-2)^2-1<0$ v\u1edbi m\u1ecdi $m$<br\/>Suy ra ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00e3 cho lu\u00f4n c\u00f3 nghi\u1ec7m v\u1edbi m\u1ecdi $m$<br\/>V\u1eady kh\u1eb3ng \u0111\u1ecbnh tr\u00ean l\u00e0 \u0111\u00fang.<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n ch\u1ecdn l\u00e0 A<\/span><br\/><span class='basic_green'>Ch\u00fa \u00fd:<\/span><br\/>a. Ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai c\u00f3 $ac<0$ th\u00ec c\u00f3 nghi\u1ec7m nh\u01b0ng \u0111i\u1ec1u ng\u01b0\u1ee3c l\u1ea1i ch\u01b0a ch\u1eafc \u0111\u00fang.<br\/>b. N\u1ebfu $ac\\le 0$ v\u00e0 $a$ kh\u00e1c $0$ th\u00ec ta c\u00f3 $\\Delta \\ge 0$ n\u00ean ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 nghi\u1ec7m v\u1edbi m\u1ecdi $m$ <br\/>c. Ch\u1ec9 v\u1edbi \u0111i\u1ec1u ki\u1ec7n $ac\\le 0,$ ch\u01b0a \u0111\u1ea3m b\u1ea3o ph\u01b0\u01a1ng tr\u00ecnh $ax^2+bx+c=0$ c\u00f3 nghi\u1ec7m. Ch\u1eb3ng h\u1ea1n ph\u01b0\u01a1ng tr\u00ecnh $m^2x^2-mx-2=0$ c\u00f3 $ac=-2{{m}^{2}}\\le 0$ nh\u01b0ng v\u1edbi $m=0$ th\u00ec ph\u01b0\u01a1ng tr\u00ecnh tr\u1edf th\u00e0nh $0x=2,$ v\u00f4 nghi\u1ec7m. <br\/>Nh\u01b0 v\u1eady khi g\u1eb7p tr\u01b0\u1eddng h\u1ee3p $ac\\le 0,$ ph\u1ea3i x\u00e9t hai tr\u01b0\u1eddng h\u1ee3p $a\\ne 0$ v\u00e0 $a=0$<\/span>","column":2}]}],"id_ques":855},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":"Ph\u01b0\u01a1ng tr\u00ecnh $3{{x}^{2}}-2\\left( a+b+c \\right)x+\\left( ab+bc+ca \\right)=0$ v\u00f4 nghi\u1ec7m v\u1edbi m\u1ecdi $a,b,c,$ <b>\u0111\u00fang<\/b> hay <b>sai<\/b>?","select":["A. \u0110\u00fang","B. Sai"],"hint":"X\u00e9t d\u1ea5u $\\Delta '$","explain":"<span class='basic_left'>Ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 $a=3;b'=\\left( a+b+c \\right);c=ab+ac+bc$ <br\/>$\\begin{align} & \\Delta '={{\\left( a+b+c \\right)}^{2}}-3\\left( ab+bc+ac \\right) \\\\ & \\,\\,\\,\\,\\,\\,={{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ac \\\\ & \\,\\,\\,\\,\\,\\,=\\dfrac{1}{2}\\left[ \\left( {{a}^{2}}-2ab+{{b}^{2}} \\right)+\\left( {{b}^{2}}-2bc+{{c}^{2}} \\right)+\\left( {{c}^{2}}-2ac+{{c}^{2}} \\right) \\right] \\\\ & \\,\\,\\,\\,\\,\\,=\\dfrac{1}{2}\\left[ {{\\left( a-b \\right)}^{2}}+{{\\left( b-c \\right)}^{2}}+{{\\left( c-a \\right)}^{2}} \\right]\\ge 0 \\\\ \\end{align}$ <br\/>Suy ra ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00e3 cho lu\u00f4n c\u00f3 nghi\u1ec7m v\u1edbi m\u1ecdi $a,$ $b,$ $c. $<br\/>V\u1eady kh\u1eb3ng \u0111\u1ecbnh b\u00e0i to\u00e1n l\u00e0 sai<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n ch\u1ecdn l\u00e0 B<\/span><\/span>","column":2}]}],"id_ques":856},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank_random","correct":[[["8,65"],["1,35"]]],"list":[{"point":5,"width":60,"content":"","type_input":"","ques":"<span class='basic_left'>Rada c\u1ee7a m\u1ed9t m\u00e1y bay theo d\u00f5i chuy\u1ec3n \u0111\u1ed9ng c\u1ee7a 1 xe t\u1ea3i trong $10$ ph\u00fat v\u00e0 ph\u00e1t hi\u1ec7n v\u1eadn t\u1ed1c c\u1ee7a xe t\u1ea3i thay \u0111\u1ed5i ph\u1ee5 thu\u1ed9c v\u00e0o th\u1eddi gian b\u1edfi c\u00f4ng th\u1ee9c: <br\/>$v=3{{t}^{2}}-30t+135$ <br\/>($t$ t\u00ednh b\u1eb1ng ph\u00fat, $v$ t\u00ednh b\u1eb1ng $km\/h$).<br\/> T\u00ednh gi\u00e1 tr\u1ecb c\u1ee7a $t$ khi v\u1eadn t\u1ed1c xe t\u1ea3i l\u00e0 $100km\/h$ (l\u00e0m tr\u00f2n k\u1ebft qu\u1ea3 \u0111\u1ebfn s\u1ed1 th\u1eadp ph\u00e2n th\u1ee9 hai).<br\/><b> \u0110\u00e1p s\u1ed1: <\/b> $t \\approx$ _input_(ph\u00fat) ho\u1eb7c $t \\approx$ _input_(ph\u00fat)<\/span>","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>B\u01b0\u1edbc 1: Thay $v=100$ v\u00e0o c\u00f4ng th\u1ee9c v\u00e0 gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh <br\/>B\u01b0\u1edbc 2: Ki\u1ec3m tra nghi\u1ec7m c\u00f3 th\u1ecfa m\u00e3n \u0111i\u1ec1u ki\u1ec7n c\u1ee7a b\u00e0i to\u00e1n v\u00e0 k\u1ebft lu\u1eadn.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/>Ta c\u00f3 $v=3{{t}^{2}}-30t+135$<br\/>V\u00ec v\u1eadn t\u1ed1c xe t\u1ea3i l\u00e0 $100km\/h$ n\u00ean ta c\u00f3:<br\/>$100=3{{t}^{2}}-30t+135\\Leftrightarrow 3{{t}^{2}}-30t+35=0$<br\/> $\\Delta '=15^2-3.35=120\\Rightarrow \\sqrt{\\Delta '}=2\\sqrt{30}$<br\/> Khi \u0111\u00f3 ${{t}_{1}}=\\dfrac{15+2\\sqrt{30}}{3}\\approx 8,65$ ; ${{t}_{2}}=\\dfrac{15-2\\sqrt{30}}{3}\\approx 1,35$<br\/> Do rada theo d\u00f5i trong $10$ ph\u00fat n\u00ean $ 0 < t \\le 10 .$ Do \u0111\u00f3 c\u1ea3 hai gi\u00e1 tr\u1ecb c\u1ee7a $t$ \u0111\u1ec1u th\u00edch h\u1ee3p.<br\/><span class='basic_pink'>V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $8,65$ v\u00e0 $1,35.$ <\/span><\/span>"}]}],"id_ques":857},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":"V\u1edbi gi\u00e1 tr\u1ecb n\u00e0o c\u1ee7a $x$ th\u00ec gi\u00e1 tr\u1ecb hai bi\u1ec3u th\u1ee9c sau b\u1eb1ng nhau:<br\/>${{x}^{2}}+2+2\\sqrt{2}$ v\u00e0 $2\\left( 1+\\sqrt{2} \\right)x$","select":["A. $x=-\\sqrt{2}$ ho\u1eb7c $x=2+\\sqrt{2}$","B. $x=\\sqrt{2}$ ho\u1eb7c $x=2-\\sqrt{2}$","C. $x=\\sqrt{2}$ ho\u1eb7c $x=-2-\\sqrt{2}$","D. $x=\\sqrt{2}$ ho\u1eb7c $x=2+\\sqrt{2}$"],"hint":"Cho hai bi\u1ec3u th\u1ee9c b\u1eb1ng nhau sau \u0111\u00f3 gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh t\u00ecm $x$","explain":"<span class='basic_left'>Gi\u00e1 tr\u1ecb hai bi\u1ec3u th\u1ee9c \u0111\u00e3 cho b\u1eb1ng nhau $\\Leftrightarrow {{x}^{2}}+2+2\\sqrt{2}=2\\left( 1+\\sqrt{2} \\right)x$<br\/> $\\Leftrightarrow {{x}^{2}}-2\\left( 1+\\sqrt{2} \\right)x+2+2\\sqrt{2}=0$<br\/> $\\begin{aligned} & \\Delta '={{\\left( 1+\\sqrt{2} \\right)}^{2}}-\\left( 2+2\\sqrt{2} \\right) \\\\ & \\,\\,\\,\\,\\,\\,=3+2\\sqrt{2}-2-2\\sqrt{2} \\\\ & \\,\\,\\,\\,\\,\\,=1 \\\\ \\end{aligned}$<br\/> V\u00ec $\\Delta '>0$ n\u00ean ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t l\u00e0 <br\/>$\\begin{aligned} & {{x}_{1}}=1+\\sqrt{2}+1=2+\\sqrt{2}; \\\\ & {{x}_{2}}=1+\\sqrt{2}-1=\\sqrt{2} \\\\ \\end{aligned}$<br\/> V\u1eady v\u1edbi $x=\\sqrt{2}$ ho\u1eb7c $x=2+\\sqrt{2}$ th\u00ec gi\u00e1 tr\u1ecb hai bi\u1ec3u th\u1ee9c \u0111\u00e3 cho b\u1eb1ng nhau<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n ch\u1ecdn l\u00e0 D<\/span><\/span>","column":2}]}],"id_ques":858},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":"<span class='basic_left'>Giao \u0111i\u1ec3m c\u1ee7a hai h\u00e0m s\u1ed1 $y=-\\dfrac{1}{2}{{x}^{2}}$ v\u00e0 $y=x-8$ l\u00e0:<\/span>","select":["<span class='basic_left'>A. $\\left( 1+\\sqrt{17};-8+\\sqrt{17} \\right)$ v\u00e0 $\\left( 1-\\sqrt{17};-8-\\sqrt{17} \\right)$<\/span>","<span class='basic_left'>B. $\\left( -1+\\sqrt{17};-9+\\sqrt{17} \\right)$ v\u00e0 $\\left( -1-\\sqrt{17};-9-\\sqrt{17} \\right)$<\/span>","<span class='basic_left'>C. $\\left( -1+\\sqrt{17};-9-\\sqrt{17} \\right)$ v\u00e0 $\\left( -1-\\sqrt{17};-9+\\sqrt{17} \\right)$<\/span>","<span class='basic_left'>D. $\\left( -1+\\sqrt{17};8+\\sqrt{17} \\right)$ v\u00e0 $\\left( -1-\\sqrt{17};8-\\sqrt{17} \\right)$<\/span>"],"hint":"X\u00e9t ph\u01b0\u01a1ng tr\u00ecnh ho\u00e0nh \u0111\u1ed9 giao \u0111i\u1ec3m c\u1ee7a hai \u0111\u1ed3 th\u1ecb","explain":"<span class='basic_left'>Ho\u00e0nh \u0111\u1ed9 giao \u0111i\u1ec3m c\u1ee7a hai \u0111\u1ed3 th\u1ecb l\u00e0 nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh:<br\/>$\\begin{aligned} & -\\dfrac{1}{2}{{x}^{2}}=x-8 \\\\ & \\Leftrightarrow {{x}^{2}}+2x-16=0 \\\\ \\end{aligned}$<br\/> $\\Delta '=1+16=17$<br\/> Suy ra $x=-1\\pm \\sqrt{17}$<br\/> Thay $x=-1+\\sqrt{17}$ v\u00e0o $y=x-8,$ ta c\u00f3: $y=-9+\\sqrt{17}$<br\/>Thay $x=-1-\\sqrt{17}$ v\u00e0o $y=x-8,$ ta c\u00f3: $y=-9-\\sqrt{17}$<br\/>V\u1eady giao \u0111i\u1ec3m c\u1ee7a hai \u0111\u1ed3 th\u1ecb \u0111\u00e3 cho l\u00e0 $\\left( -1+\\sqrt{17};-9+\\sqrt{17} \\right)$ v\u00e0 $\\left( -1-\\sqrt{17};-9-\\sqrt{17} \\right)$ <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n ch\u1ecdn l\u00e0 B<\/span><\/span>","column":1}]}],"id_ques":859},{"time":24,"part":[{"title":"\u0110i\u1ec1n c\u1eb7p s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"V\u00ed d\u1ee5: B\u1ea1n t\u00ecm \u0111\u01b0\u1ee3c nghi\u1ec7m $(a;b)$ th\u00ec ta \u0111i\u1ec1n $(a;b)$. <br\/>Ch\u00fa \u00fd: \u0110i\u1ec1n c\u1ea3 d\u1ea5u ngo\u1eb7c ''('' ,'')'' v\u00e0 d\u1ea5u ch\u1ea5m ph\u1ea9y '';''","temp":"fill_the_blank_random","correct":[[["(1;3)"],["(5;-5)"]]],"list":[{"point":5,"width":80,"content":"","type_input":"","ques":"Gi\u1ea3i h\u1ec7 ph\u01b0\u01a1ng tr\u00ecnh: $\\left\\{ \\begin{align} & 2x+y-5=0 \\\\ & y+{{x}^{2}}=4x \\\\ \\end{align} \\right.$ <br\/>H\u1ec7 ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m $(x;y)$ l\u00e0 _input_ v\u00e0 _input_ ","hint":"D\u00f9ng ph\u01b0\u01a1ng ph\u00e1p th\u1ebf \u0111\u1ec3 gi\u1ea3i h\u1ec7 ph\u01b0\u01a1ng tr\u00ecnh","explain":"<span class='basic_left'>Bi\u1ec3u di\u1ec5n $y$ thep $x$ t\u1eeb ph\u01b0\u01a1ng tr\u00ecnh th\u1ee9 nh\u1ea5t, ta \u0111\u01b0\u1ee3c: $y=5-2x$ (1)<br\/>Th\u1ebf (1) v\u00e0o ph\u01b0\u01a1ng tr\u00ecnh th\u1ee9 hai, ta c\u00f3:<br\/>$\\begin{aligned} & 5-2x+{{x}^{2}}=4x \\\\ & \\Leftrightarrow {{x}^{2}}-6x+5=0 \\\\ & \\Leftrightarrow {{x}^{2}}-x-5x+5=0 \\\\ & \\Leftrightarrow x\\left( x-1 \\right)-5\\left( x-1 \\right)=0 \\\\ & \\Leftrightarrow \\left( x-1 \\right)\\left( x-5 \\right)=0 \\\\ & \\Leftrightarrow \\left[ \\begin{aligned} & x=1 \\\\ & x=5 \\\\ \\end{aligned} \\right. \\\\ \\end{aligned}$<br\/> V\u1edbi $x=1$ th\u00ec $\\left( 1 \\right)\\Leftrightarrow y=5-2.1=3$<br\/> V\u1edbi $x=5$ th\u00ec $\\left( 1 \\right)\\Leftrightarrow y=5-2.5=-5$ <br\/>V\u1eady h\u1ec7 ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00e3 cho c\u00f3 hai nghi\u1ec7m $(x;y)$ l\u00e0 $(1;3)$ v\u00e0 $(5;-5)$<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n \u0111i\u1ec1n l\u00e0 $(1;3)$ v\u00e0 $(5;-5)$<\/span><\/span>"}]}],"id_ques":860}],"lesson":{"save":0,"level":2}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý