đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":10,"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai7/lv3/img\/4.jpg' \/><\/center>Bi\u1ec3u th\u1ee9c $\\sqrt{\\dfrac{x-2}{x+3}}$ c\u00f3 ngh\u0129a khi: ","select":["A. $x\\ge 2$ ","B. $x\\ge 2$ ho\u1eb7c $x < -3$","C. $x < -3$","D. $-3\\le x\\le 2$"],"hint":"","explain":"<span class='basic_left'>\u0110i\u1ec1u ki\u1ec7n x\u00e1c \u0111\u1ecbnh: $\\dfrac{x-2}{x+3}\\ge 0$ <br\/>Tr\u01b0\u1eddng h\u1ee3p 1: $\\left\\{ \\begin{aligned} & x-2\\ge 0 \\\\ & x+3>0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & x\\ge 2 \\\\ & x>-3 \\\\ \\end{aligned} \\right.\\Leftrightarrow x\\ge 2$ <br\/>Tr\u01b0\u1eddng h\u1ee3p 2: $\\left\\{ \\begin{aligned} & x-2\\le 0 \\\\ & x+3<0 \\\\\\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & x\\le 2 \\\\ & x<-3 \\\\ \\end{aligned} \\right.\\Leftrightarrow x<-3$ <br\/>V\u1eady bi\u1ec3u th\u1ee9c $\\sqrt{\\dfrac{x-2}{x+3}}$ c\u00f3 ngh\u0129a khi $x\\ge 2$ ho\u1eb7c $x < -3$ <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 B<\/span><\/span>","column":2}]}],"id_ques":751},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u","temp":"multiple_choice","correct":[[4]],"list":[{"point":10,"ques":"<span class='basic_left'>V\u1edbi $x>0;\\,\\,x\\ne 1$. Cho bi\u1ec3u th\u1ee9c: <br\/>$P=\\left( \\dfrac{\\sqrt{x}}{\\sqrt{x}-1}+\\dfrac{\\sqrt{x}}{x-1} \\right)\\,$$:\\left[ \\dfrac{2}{x}-\\dfrac{2-x}{x\\left( \\sqrt{x}+1 \\right)} \\right]$ <br\/><b> C\u00e2u 1: <\/b> R\u00fat g\u1ecdn $P$ \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0:<\/span> ","select":["A. $-\\dfrac{x}{\\sqrt{x}+1}$ ","B. $-\\dfrac{x}{\\sqrt{x}-1}$ ","C. $\\dfrac{x}{\\sqrt{x}+1}$","D. $\\dfrac{x}{\\sqrt{x}-1}$"],"hint":"R\u00fat g\u1ecdn hai bi\u1ec3u th\u1ee9c trong ngo\u1eb7c tr\u01b0\u1edbc r\u1ed3i m\u1edbi th\u1ef1c hi\u1ec7n ph\u00e9p chia hai bi\u1ec3u th\u1ee9c","explain":"<span class='basic_left'>V\u1edbi $x>0;\\,\\,x\\ne 1$. Ta c\u00f3:<br\/>$P=\\left( \\dfrac{\\sqrt{x}}{\\sqrt{x}-1}+\\dfrac{\\sqrt{x}}{x-1} \\right)\\,$$:\\left[ \\dfrac{2}{x}-\\dfrac{2-x}{x\\left( \\sqrt{x}+1 \\right)} \\right]$<br\/>$ =\\dfrac{\\sqrt{x}\\left( \\sqrt{x}+1 \\right)+\\sqrt{x}}{\\left( \\sqrt{x}-1 \\right)\\left( \\sqrt{x}+1 \\right)}\\,$$:\\dfrac{2\\sqrt{x}+2-2+x}{x\\left( \\sqrt{x}+1 \\right)} $<br\/>$ =\\dfrac{x+2\\sqrt{x}}{\\left( \\sqrt{x}-1 \\right)\\left( \\sqrt{x}+1 \\right)}\\,$$.\\dfrac{x\\left( \\sqrt{x}+1 \\right)}{x+2\\sqrt{x}} $<br\/>$ =\\dfrac{x}{\\sqrt{x}-1}$ <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t D<\/span><\/span>","column":2}]}],"id_ques":752},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u","temp":"multiple_choice","correct":[[3]],"list":[{"point":10,"ques":" <span class='basic_left'>V\u1edbi $x>0;\\,\\,x\\ne 1$ . Cho bi\u1ec3u th\u1ee9c: <br\/>$P=\\left( \\dfrac{\\sqrt{x}}{\\sqrt{x}-1}+\\dfrac{\\sqrt{x}}{x-1} \\right)\\,$$:\\left[ \\dfrac{2}{x}-\\dfrac{2-x}{x\\left( \\sqrt{x}+1 \\right)} \\right]$<br\/><b> C\u00e2u 2: <\/b> T\u00ecm $x$ khi $P=2$<\/span>","select":["A. $x=4$ ","B. $x = 2$","C. $x\\in \\varnothing$","D. $x \\in \\mathbb R$"],"hint":"Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh $P=2$","explain":"<span class='basic_left'>Theo c\u00e2u 1, v\u1edbi $x>0;\\,\\,x\\ne 1$, ta c\u00f3:<br\/>$P=\\dfrac{x}{\\sqrt{x}-1}$ <br\/>Ta c\u00f3: <br\/>$\\begin{aligned} & P=2\\Leftrightarrow \\dfrac{x}{\\sqrt{x}-1}=2 \\\\ & \\Leftrightarrow \\dfrac{x}{\\sqrt{x}-1}=\\dfrac{2\\left( \\sqrt{x}-1 \\right)}{\\sqrt{x}-1} \\\\ & \\Leftrightarrow x-2\\sqrt{x}+2=0 \\\\ & \\Leftrightarrow {{\\left( \\sqrt{x}-1 \\right)}^{2}}+1=0 \\\\ \\end{aligned}$ <br\/>V\u00ec ${{\\left( \\sqrt{x}-1 \\right)}^{2}}\\ge 0 \\Rightarrow {{\\left( \\sqrt{x}-1 \\right)}^{2}}+1 > 0 \\,\\,\\,\\forall x>0;\\,\\,x\\ne 1$ <br\/>V\u1eady kh\u00f4ng c\u00f3 gi\u00e1 tr\u1ecb n\u00e0o c\u1ee7a $x$ \u0111\u1ec3 $P= 2$<br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t C<\/span>","column":2}]}],"id_ques":753},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u","temp":"fill_the_blank","correct":[[["4"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":" <span class='basic_left'>V\u1edbi $x>0;\\,\\,x\\ne 1$. Cho bi\u1ec3u th\u1ee9c: <br\/>$P=\\left( \\dfrac{\\sqrt{x}}{\\sqrt{x}-1}+\\dfrac{\\sqrt{x}}{x-1} \\right)\\,$$:\\left[ \\dfrac{2}{x}-\\dfrac{2-x}{x\\left( \\sqrt{x}+1 \\right)} \\right]$<br\/><b> C\u00e2u 3: <\/b> T\u00ecm $x \\in\\,\\mathbb Z$ \u0111\u1ec3 $P\\in\\mathbb Z$ <br\/><b>\u0110\u00e1p \u00e1n:<\/b> $x=$_input_ <\/span>","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c $P$ v\u1ec1 d\u1ea1ng $m + \\dfrac{n}{f(x)}$ v\u1edbi $m, n \\in \\mathbb Z$<br\/>B\u01b0\u1edbc 2: Cho m\u1eabu c\u1ee7a ph\u00e2n th\u1ee9c \u0111\u00f3 b\u1eb1ng \u01b0\u1edbc c\u1ee7a t\u1eed <br\/>B\u01b0\u1edbc 3: T\u00ecm $x$ v\u00e0 so s\u00e1nh v\u1edbi \u0111i\u1ec1u ki\u1ec7n v\u00e0 k\u1ebft lu\u1eadn.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><span class='basic_left'>Theo c\u00e2u 1, v\u1edbi $x>0;\\,\\,x\\ne 1$, ta c\u00f3:<br\/>$P=\\dfrac{x}{\\sqrt{x}-1}=\\sqrt{x}+1+\\dfrac{1}{\\sqrt{x}-1}$<br\/>\u0110\u1ec3 $P\\in \\mathbb Z\\Leftrightarrow \\dfrac{1}{\\sqrt{x}-1}\\in \\mathbb Z\\Leftrightarrow \\sqrt{x}-1\\in \u01af(1)=\\{\\pm 1\\}$<br\/>Ta c\u00f3 b\u1ea3ng sau:<br\/><table> <tr> <th>$\\sqrt{x}-1$<\/th> <th>-1<\/th> <th>1<\/th> <\/tr> <tr> <td>$\\sqrt{x}$<\/td> <td>0<\/td> <td>2<\/td> <\/tr> <tr> <td>x<\/td> <td>lo\u1ea1i <\/td> <td>4<\/td> <\/tr><\/table><br\/>K\u1ebft h\u1ee3p v\u1edbi \u0111i\u1ec1u ki\u1ec7n $x >0$ v\u00e0 $x\\ne1$ $\\Rightarrow$ $x=4$ th\u00ec $P\\in \\mathbb Z$ <br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $4$<\/span><\/span><\/span> "}]}],"id_ques":754},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u ","temp":"fill_the_blank_random","correct":[[["4"],["4"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":" <span class='basic_left'>Cho bi\u1ec3u th\u1ee9c: $P=\\left( \\dfrac{\\sqrt{x}}{\\sqrt{x}-1}+\\dfrac{\\sqrt{x}}{x-1} \\right)\\,$$:\\left[ \\dfrac{2}{x}-\\dfrac{2-x}{x\\left( \\sqrt{x}+1 \\right)} \\right]$<br\/><b> C\u00e2u 4: <\/b> V\u1edbi $x > 1$, gi\u00e1 tr\u1ecb nh\u1ecf nh\u1ea5t c\u1ee7a $P$ t\u00ecm \u0111\u01b0\u1ee3c l\u00e0 $P=$_input_khi $x=$ _input_<\/span>","hint":"\u0110\u01b0a $P$ v\u1ec1 d\u1ea1ng $f(x)+\\dfrac{a}{f(x)}+b$ trong \u0111\u00f3 $a>0$, $f(x) >0$. Sau \u0111\u00f3, \u00e1p d\u1ee5ng B\u0110T Cauchy","explain":"<span class='basic_left'>Theo c\u00e2u 1, v\u1edbi $x>0;\\,\\,x\\ne 1$, ta c\u00f3:<br\/> $P=\\dfrac{x}{\\sqrt{x}-1}=\\sqrt{x}+1+\\dfrac{1}{\\sqrt{x}-1}\\,$$=\\sqrt{x}-1+\\dfrac{1}{\\sqrt{x}-1}+2$<br\/>V\u00ec $x > 1 \\Rightarrow \\sqrt{x}-1>0$ <br\/>\u00c1p d\u1ee5ng b\u1ea5t \u0111\u1eb3ng th\u1ee9c Cauchy cho hai s\u1ed1 kh\u00f4ng \u00e2m $\\sqrt{x}-1$ v\u00e0 $\\dfrac{1}{\\sqrt{x}-1}$, ta c\u00f3: <br\/>$\\sqrt{x}-1+\\dfrac{1}{\\sqrt{x}-1}\\,$$\\ge 2\\sqrt{\\left( \\sqrt{x}-1 \\right).\\dfrac{1}{\\sqrt{x}-1}}=2$ <br\/>Suy ra, $ P\\ge 2+2\\ge 4$. Do \u0111\u00f3, <br\/>$\\begin{align} {{P}_{\\min }}=4& \\Leftrightarrow \\sqrt{x}-1=\\dfrac{1}{\\sqrt{x}-1} \\\\ & \\Leftrightarrow {{\\left( \\sqrt{x}-1 \\right)}^{2}}=1 \\\\ & \\Leftrightarrow \\sqrt{x}-1=1 \\,\\, (\\text {V\u00ec} x > 1)\\\\ & \\Leftrightarrow \\sqrt{x}=2 \\\\ & \\Leftrightarrow x=4 \\,\\, (\\text {(th\u1ecfa m\u00e3n)})\\\\ \\end{align}$ <br\/>V\u1eady gi\u00e1 tr\u1ecb nh\u1ecf nh\u1ea5t c\u1ee7a $P$ l\u00e0 $4$ khi $x=4$<br\/> <span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $4; 4$ <\/span><\/span><\/span>"}]}],"id_ques":755},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u $> , < , =$ th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank_random","correct":[[[">"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai7/lv3/img\/5.jpg' \/><\/center> Cho hai bi\u1ec3u th\u1ee9c $A=1+\\sqrt{12}+\\sqrt{37}$ v\u00e0 $B=6\\sqrt{3}$ <br\/>So s\u00e1nh: $A$ _input_ $B$","hint":"So s\u00e1nh ${{\\left( 1+\\sqrt{37} \\right)}^{2}}$ v\u00e0 $(4\\sqrt 3)^2$","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$A=1+\\sqrt{12}+\\sqrt{37}\\,$$=1+2\\sqrt{3}+\\sqrt{37}$<br\/>$B=4\\sqrt 3 +2\\sqrt 3$<br\/> ${{\\left( 1+\\sqrt{37} \\right)}^{2}}=38+2\\sqrt{37}$ <br\/>${{\\left( 4\\sqrt{3} \\right)}^{2}}=48=38+2\\sqrt{25}$ <br\/>Suy ra ${{\\left( 4\\sqrt{3} \\right)}^{2}}<{{\\left( 1+\\sqrt{37} \\right)}^{2}}\\,$$\\Leftrightarrow 4\\sqrt{3}<1+\\sqrt{37}\\,$$\\Leftrightarrow 6\\sqrt{3}<1+2\\sqrt{3}+\\sqrt{37}$ <br\/>Do \u0111\u00f3 $A > B$ <br\/> <span class='basic_pink'>V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n l\u00e0 $>$ <\/span><\/span><\/span>"}]}],"id_ques":756},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":10,"ques":" T\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh $\\dfrac{\\sqrt{{{x}^{2}}+2x-3}}{\\sqrt{x-1}}=3+x$ l\u00e0: ","select":["A. $S=\\{\\varnothing \\}$ ","B. $S=\\{-2;-3\\}$","C. $S=\\mathbb R$"],"hint":"Ph\u00e2n t\u00edch bi\u1ec3u th\u1ee9c trong c\u0103n c\u1ee7a t\u1eed th\u1ee9c b\u00ean v\u1ebf tr\u00e1i th\u00e0nh nh\u00e2n t\u1eed r\u1ed3i r\u00fat g\u1ecdn v\u00e0 \u0111\u01b0a ph\u01b0\u01a1ng tr\u00ecnh v\u1ec1 d\u1ea1ng $\\sqrt {f(x)}= g(x)$.","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: T\u00ecm \u0111i\u1ec1u ki\u1ec7n c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh <br\/>B\u01b0\u1edbc 2: Ph\u00e2n t\u00edch \u0111a th\u1ee9c th\u00e0nh nh\u00e2n t\u1eed<br\/>B\u01b0\u1edbc 3:Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh v\u00e0 t\u00ecm nghi\u1ec7m<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<br\/><\/span>\u0110i\u1ec1u ki\u1ec7n x\u00e1c \u0111\u1ecbnh <br\/>$\\left\\{ \\begin{aligned} & x-1>0 \\\\ & {{x}^{2}}+2x-3\\ge 0 \\\\ \\end{aligned} \\right.\\,$$\\Leftrightarrow \\left\\{ \\begin{aligned} & x>1 \\\\ & \\left( x-1 \\right)\\left( x+3 \\right)\\ge 0 \\\\ \\end{aligned} \\right.\\,$$\\Leftrightarrow x>1$ . <br\/>$\\begin{aligned} & \\,\\,\\,\\,\\dfrac{\\,\\sqrt{{{x}^{2}}+2x-3}}{\\sqrt{x-1}}=3+x \\\\ & \\Leftrightarrow \\dfrac{\\sqrt{\\left( x-1 \\right)\\left( x+3 \\right)}}{\\sqrt{x-1}}=x+3 \\\\ & \\Leftrightarrow \\sqrt{x+3}=x+3 \\\\ & \\Leftrightarrow x+3\\,\\,\\,\\,\\,={{\\left( x+3 \\right)}^{2}} \\\\ & \\Leftrightarrow \\left( x+3 \\right)\\left( x+2 \\right)=0 \\\\ & \\Leftrightarrow \\left[ \\begin{aligned} & x=-3\\,\\,\\,\\,\\left( lo\u1ea1i \\right) \\\\ & x=-2\\,\\,\\,\\,\\left( lo\u1ea1i \\right) \\\\ \\end{aligned} \\right. \\\\ \\end{aligned}$<br\/>V\u1eady ph\u01b0\u01a1ng tr\u00ecnh v\u00f4 nghi\u1ec7m <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t A<\/span><\/span>","column":3}]}],"id_ques":757},{"time":24,"part":[{"title":"Kh\u1eb3ng \u0111\u1ecbnh sau \u0110\u00fang hay Sai","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":10,"ques":" <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai7/lv3/img\/9.jpg' \/><\/center>V\u1edbi $x > y$ v\u00e0 $x.y = 1$ ta c\u00f3: $\\dfrac{{{x}^{2}}+{{y}^{2}}}{x-y}\\ge 2\\sqrt{2}$ ","select":["A. \u0110\u00fang ","B. Sai"],"hint":"Ch\u1ee9ng minh b\u1ea5t \u0111\u1eb3ng th\u1ee9c ban \u0111\u1ea7u \u0111\u00fang. Ta quy \u0111\u1ed3ng hai v\u1ebf r\u1ed3i kh\u1eed m\u1eabu, sau \u0111\u00f3 th\u00eam b\u1edbt $2=2xy$ v\u00e0o \u0111\u1ec3 xu\u1ea5t hi\u1ec7n h\u1eb1ng \u0111\u1eb3ng th\u1ee9c.","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\dfrac{{{x}^{2}}+{{y}^{2}}}{x-y}\\ge 2\\sqrt{2}\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\left( 1 \\right)$<br\/>$\\Leftrightarrow {{x}^{2}}+{{y}^{2}}\\,$$-2\\sqrt{2}\\left( x-y \\right)\\ge 0$ (do $x > y$)<br\/>$ \\Leftrightarrow {{x}^{2}}+{{y}^{2}}-2+2-2\\sqrt{2}\\left( x-y \\right)\\ge 0 $<br\/>$ \\Leftrightarrow {{x}^{2}}+{{y}^{2}}-2xy-2\\sqrt{2}\\left( x-y \\right)+\\,$$2\\ge 0\\,\\,\\,\\,\\,(V\u00ec\\,\\,x.y=1) $<br\/>$ \\Leftrightarrow {{\\left( x-y \\right)}^{2}}-2\\sqrt{2}\\left( x-y \\right)\\,$$+\\sqrt{{{2}^{2}}}\\ge 0 $<br\/>$ \\Leftrightarrow {{\\left( x-y-\\sqrt{2} \\right)}^{2}}\\ge 0\\,\\,\\,\\,\\,\\left( * \\right)$<br\/>B\u1ea5t \u0111\u1eb3ng th\u1ee9c (*) lu\u00f4n \u0111\u00fang $\\Rightarrow $ B\u1ea5t \u0111\u1eb3ng th\u1ee9c (1) lu\u00f4n \u0111\u00fang<br\/>Do \u0111\u00f3 kh\u1eb3ng \u0111\u1ecbnh tr\u00ean l\u00e0 \u0110\u00fang <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t l\u00e0 A<\/span><br\/><i>Nh\u1eadn x\u00e9t:<\/i> Ph\u01b0\u01a1ng ph\u00e1p ch\u1ee9ng minh b\u1ea5t \u0111\u1eb3ng th\u1ee9c: S\u1eed d\u1ee5ng ph\u00e9p bi\u1ebfn \u0111\u1ed5i t\u01b0\u01a1ng \u0111\u01b0\u01a1ng d\u1eabn \u0111\u1ebfn m\u1ed9t \u0111i\u1ec1u lu\u00f4n \u0111\u00fang th\u00ec b\u1ea5t \u0111\u1eb3ng th\u1ee9c ban \u0111\u1ea7u c\u0169ng lu\u00f4n \u0111\u00fang.<\/span><\/span>","column":2}]}],"id_ques":758},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"select":["A. $\\sqrt{2}$","B. $2\\sqrt{2}$","C. $3\\sqrt{2}$"],"ques":"V\u1edbi $\\dfrac{1}{6}\\le x\\le \\dfrac{1}{3}$ . R\u00fat g\u1ecdn bi\u1ec3u th\u1ee9c sau<br\/>$ A=\\sqrt{3x+\\sqrt{6x-1}}\\,$$+\\sqrt{3x-\\sqrt{6x-1}}$<br\/>\u0110\u00e1p \u00e1n: $A=$?","hint":"Nh\u00e2n $\\sqrt{2}$ v\u00e0o hai v\u1ebf r\u1ed3i \u0111\u01b0a $\\sqrt{2}$ v\u00e0o trong d\u1ea5u c\u0103n \u0111\u1ec3 chuy\u1ec3n bi\u1ec3u th\u1ee9c d\u01b0\u1edbi c\u0103n v\u1ec1 d\u1ea1ng $(A \\pm B)^2$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: Nh\u00e2n $\\sqrt{2}$ v\u00e0o hai v\u1ebf r\u1ed3i \u0111\u01b0a $\\sqrt{2}$ v\u00e0o trong d\u1ea5u c\u0103n \u0111\u1ec3 chuy\u1ec3n bi\u1ec3u th\u1ee9c d\u01b0\u1edbi c\u0103n v\u1ec1 d\u1ea1ng $(A \\pm B)^2$<br\/>B\u01b0\u1edbc 2: \u0110\u01b0a bi\u1ec3u th\u1ee9c trong c\u0103n v\u1ec1 d\u1ea1ng $(a \\pm b)^2$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><span class='basic_left'>$ A=\\sqrt{3x+\\sqrt{6x-1}}\\,$$+\\sqrt{3x-\\sqrt{6x-1}}$<br\/>$ A\\sqrt{2}=\\sqrt{6x+2\\sqrt{6x-1}}\\,$$+\\sqrt{6x-2\\sqrt{6x-1}} $<br\/>$ A\\sqrt{2}=\\sqrt{6x-1+2\\sqrt{6x-1}+1}\\,$$+\\sqrt{6x-1-2\\sqrt{6x-1}+1} $<br\/>$A\\sqrt{2}=\\sqrt{{{\\left( \\sqrt{6x-1}+1 \\right)}^{2}}}\\,$$+\\sqrt{{{\\left( \\sqrt{6x-1}-1 \\right)}^{2}}}$<br\/>$ A\\sqrt{2}=\\left| \\sqrt{6x-1}+1 \\right|+\\left| \\sqrt{6x-1}-1 \\right|$<br\/>V\u00ec $\\dfrac{1}{6}\\le x\\le \\dfrac{1}{3}$ n\u00ean $\\sqrt{6x-1}-1<0\\,$$\\Rightarrow \\left| \\sqrt{6x-1}-1 \\right|=1-\\sqrt{6x-1}$ <br\/> $A\\sqrt{2}\\,$$=\\sqrt{6x-1}+1+1-\\sqrt{6x-1}=2\\,$$\\Rightarrow A=2:\\sqrt 2 =\\sqrt{2}$ <\/span> <\/span><\/span>"}]}],"id_ques":759},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank_random","correct":[[["0"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":" V\u1edbi $a > 0,\\, b > 0$. R\u00fat g\u1ecdn bi\u1ec3u th\u1ee9c<br\/>$\\dfrac{{{\\left( \\sqrt{a}-\\sqrt{b} \\right)}^{2}}+4\\sqrt{ab}}{\\sqrt{a}+\\sqrt{b}}\\,$$-\\dfrac{a\\sqrt{b}-b\\sqrt{a}}{\\sqrt{ab}}-2\\sqrt{b}=$ _input_","hint":"Th\u1ef1c hi\u1ec7n c\u00e1c ph\u00e9p bi\u1ebfn \u0111\u1ed5i \u0111\u01a1n gi\u1ea3n v\u1ec1 h\u1eb1ng \u0111\u1eb3ng th\u1ee9c, th\u1eeba s\u1ed1 chung,... \u0111\u1ec3 r\u00fat g\u1ecdn bi\u1ec3u th\u1ee9c","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$ \\,\\,\\,\\,\\dfrac{{{\\left( \\sqrt{a}-\\sqrt{b} \\right)}^{2}}+4\\sqrt{ab}}{\\sqrt{a}+\\sqrt{b}}\\,$$-\\dfrac{a\\sqrt{b}-b\\sqrt{a}}{\\sqrt{ab}}-2\\sqrt{b} $<br\/>$ =\\dfrac{a-2\\sqrt{ab}+b+4\\sqrt{ab}}{\\sqrt{a}+\\sqrt{b}}\\,$$-\\dfrac{\\sqrt{ab}\\left( \\sqrt{a}-\\sqrt{b} \\right)}{\\sqrt{ab}}-2\\sqrt{b} $<br\/>$ \\begin{align}&=\\dfrac{{{\\left( \\sqrt{a}+\\sqrt{b} \\right)}^{2}}}{\\sqrt{a}+\\sqrt{b}}-\\sqrt{a}+\\sqrt{b}-2\\sqrt{b} \\\\ & =\\sqrt{a}+\\sqrt{b}-\\sqrt{a}-\\sqrt{b} \\\\ & =0 \\\\ \\end{align}$ <br\/> <span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $0$<\/span><\/span><\/span>"}]}],"id_ques":760}],"lesson":{"save":0,"level":3}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý