đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank","correct":[[["2"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai7/lv2/img\/4.jpg' \/><\/center>R\u00fat g\u1ecdn bi\u1ec3u th\u1ee9c<br\/>$\\left( 4+\\sqrt{15} \\right)\\left( \\sqrt{10}-\\sqrt{6} \\right)\\sqrt{4-\\sqrt{15}}=$_input_ ","hint":"\u0110\u01b0a bi\u1ec3u th\u1ee9c $4+\\sqrt {15}$ v\u00e0o trong d\u1ea5u c\u0103n","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: \u00c1p d\u1ee5ng: Quy t\u1eafc \u0111\u01b0a th\u1eeba s\u1ed1 v\u00e0o trong d\u1ea5u c\u0103n<br\/>B\u01b0\u1edbc 2: \u0110\u01b0a bi\u1ec3u th\u1ee9c $\\sqrt 10-\\sqrt 6$ v\u00e0o trong d\u1ea5u c\u0103n v\u00e0 \u0111\u01b0a bi\u1ec3u th\u1ee9c trong c\u0103n v\u1ec1 d\u1ea1ng $(A+B)^2$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ta c\u00f3:<br\/>$\\begin{align} & \\,\\,\\,\\left( 4+\\sqrt{15} \\right)\\left( \\sqrt{10}-\\sqrt{6} \\right)\\sqrt{4-\\sqrt{15}} \\\\ & =\\sqrt{{{\\left( 4+\\sqrt{15} \\right)}^{2}}\\left( 4-\\sqrt{15} \\right)}\\left( \\sqrt{10}-\\sqrt{6} \\right) \\\\ & =\\sqrt{\\left( {{4}^{2}}-\\sqrt{{{15}^{2}}} \\right)\\left( 4+\\sqrt{15} \\right){{\\left( \\sqrt{10}-\\sqrt{6} \\right)}^{2}}} \\\\ & =\\sqrt{\\left( 4+\\sqrt{15} \\right){{\\left[ \\sqrt{2}\\left( \\sqrt{5}-\\sqrt{3} \\right) \\right]}^{2}}} \\\\ & =\\sqrt{2\\left( 4+\\sqrt{15} \\right){{\\left( \\sqrt{5}-\\sqrt{3} \\right)}^{2}}} \\\\ & =\\sqrt{\\left( 8+2\\sqrt{15} \\right){{\\left( \\sqrt{5}-\\sqrt{3} \\right)}^{2}}} \\\\ & =\\sqrt{{{\\left( \\sqrt{5}+\\sqrt{3} \\right)}^{2}}{{\\left( \\sqrt{5}-\\sqrt{3} \\right)}^{2}}} \\\\ & =\\sqrt{{{\\left( 5-3 \\right)}^{2}}}\\\\&=2 \\\\ \\end{align}$ <br\/> <span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $2$<\/span><\/span><\/span>"}]}],"id_ques":731},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":"<span class='basic_left'>V\u1edbi $x\\ge 0;\\,\\,x\\ne 9$. Cho hai bi\u1ec3u th\u1ee9c<br\/>$A=\\dfrac{x+3}{x-9}+\\dfrac{2}{\\sqrt{x}+3}-\\dfrac{1}{\\sqrt{x}-3}$ v\u00e0 $B=\\dfrac{\\sqrt{x}+1}{\\sqrt{x}+2}$ <br\/><b> C\u00e2u 1: <\/b>R\u00fat g\u1ecdn bi\u1ec3u th\u1ee9c $A$ \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0:<\/span> ","select":["A. $\\dfrac{\\sqrt{x}-2}{\\sqrt{x}-3}$ ","B. $\\dfrac{\\sqrt{x}-2}{\\sqrt{x}+3}$ ","C. $\\dfrac{\\sqrt{x}+2}{\\sqrt{x}-3}$","D. $\\dfrac{\\sqrt{x}+2}{\\sqrt{x}+3}$"],"hint":"Quy \u0111\u1ed3ng m\u1eabu th\u1ee9c c\u00e1c ph\u00e2n th\u1ee9c v\u1edbi m\u1eabu th\u1ee9c chung $(\\sqrt{x}+3)(\\sqrt{x}-3)$","explain":"<span class='basic_left'>V\u1edbi $x\\ge 0;\\,\\,x\\ne 9$. Ta c\u00f3:<br\/> $\\begin{align} A&=\\dfrac{x+3}{x-9}+\\dfrac{2}{\\sqrt{x}+3}-\\dfrac{1}{\\sqrt{x}-3} \\\\ & =\\dfrac{x+3+2\\left( \\sqrt{x}-3 \\right)-\\left( \\sqrt{x}+3 \\right)}{\\left( \\sqrt{x}+3 \\right)\\left( \\sqrt{x}-3 \\right)} \\\\ & =\\dfrac{x+3+2\\sqrt{x}-6-\\sqrt{x}-3}{\\left( \\sqrt{x}+3 \\right)\\left( \\sqrt{x}-3 \\right)} \\\\ & =\\dfrac{x+\\sqrt{x}-6}{\\left( \\sqrt{x}+3 \\right)\\left( \\sqrt{x}-3 \\right)} \\\\ & =\\dfrac{x-2\\sqrt{x}+3\\sqrt x -6}{\\left( \\sqrt{x}+3 \\right)\\left( \\sqrt{x}-3 \\right)} \\\\ & =\\dfrac{\\left( \\sqrt{x}-2 \\right)\\left( \\sqrt{x}+3 \\right)}{\\left( \\sqrt{x}-3 \\right)\\left( \\sqrt{x}+3 \\right)} \\\\ & =\\dfrac{\\sqrt{x}-2}{\\sqrt{x}-3} \\\\ \\end{align}$ <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 A<\/span>","column":2}]}],"id_ques":732},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":"<span class='basic_left'>V\u1edbi $x\\ge 0;\\,\\,x\\ne 9$. Cho hai bi\u1ec3u th\u1ee9c<br\/>$A=\\dfrac{x+3}{x-9}+\\dfrac{2}{\\sqrt{x}+3}-\\dfrac{1}{\\sqrt{x}-3}$ v\u00e0 $B=\\dfrac{\\sqrt{x}+1}{\\sqrt{x}+2}$ <br\/><b> C\u00e2u 2: <\/b> T\u00ecm $x$ \u0111\u1ec3 $A < 1$<\/span> ","select":["A. $x \\ge 0$ ","B. $x > 9$ ","C. $0\\le x < 9$","D. $x < 9$"],"hint":"Gi\u1ea3i b\u1ea5t ph\u01b0\u01a1ng tr\u00ecnh $A<1$","explain":"<span class='basic_left'>Theo c\u00e2u 1, v\u1edbi $x\\ge 0;\\,\\,x\\ne 9$, ta c\u00f3: <br\/> $A=\\dfrac{\\sqrt{x}-2}{\\sqrt{x}-3}$ <br\/>$\\begin{align} A<1&\\Leftrightarrow \\dfrac{\\sqrt{x}-2}{\\sqrt{x}-3}<1 \\\\ & \\Leftrightarrow \\dfrac{\\sqrt{x}-2-\\sqrt{x}+3}{\\sqrt{x}-3}<0 \\\\ & \\Leftrightarrow \\dfrac{1}{\\sqrt{x}-3}<0 \\\\ & \\Leftrightarrow \\sqrt{x}-3<0 \\,\\,\\, (\\text {V\u00ec} 1>0)\\\\ & \\Leftrightarrow x<9 \\\\ \\end{align}$ <br\/>M\u00e0 $x\\ge 0;\\,\\,x\\ne 9$. Do \u0111\u00f3 A < 1 $\\Leftrightarrow 0\\le x<9$ <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 C<\/span>","column":2}]}],"id_ques":733},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"select":["A. $\\dfrac{1}{4}$","B. $\\dfrac{3}{4}$","C. $\\dfrac{5}{4}$"],"ques":" <span class='basic_left'>V\u1edbi $x\\ge 0;\\,\\,x\\ne 9$. Cho hai bi\u1ec3u th\u1ee9c<br\/>$A=\\dfrac{x+3}{x-9}+\\dfrac{2}{\\sqrt{x}+3}-\\dfrac{1}{\\sqrt{x}-3}$ v\u00e0 $B=\\dfrac{\\sqrt{x}+1}{\\sqrt{x}+2}$ <br\/>V\u1edbi $A = B$ th\u00ec $x=$?<\/span>","hint":"Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh $A=B$ v\u1edbi bi\u1ec3u th\u1ee9c $A$ l\u00e0 k\u1ebft qu\u1ea3 r\u00fat g\u1ecdn c\u00e2u 1","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: Quy \u0111\u1ed3ng v\u00e0 kh\u1eed m\u1eabu ph\u01b0\u01a1ng tr\u00ecnh $A=B$<br\/>B\u01b0\u1edbc 2: R\u00fat g\u1ecdn ph\u01b0\u01a1ng tr\u00ecnh v\u00e0 t\u00ecm nghi\u1ec7m<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Theo c\u00e2u 1, v\u1edbi $x\\ge 0;\\,\\,x\\ne 9$, ta c\u00f3: <br\/>$A=\\dfrac{\\sqrt{x}-2}{\\sqrt{x}-3}$ <br\/>$\\begin{align} A=B&\\Leftrightarrow \\dfrac{\\sqrt{x}-2}{\\sqrt{x}-3}=\\dfrac{\\sqrt{x}+1}{\\sqrt{x}+2} \\\\ & \\Leftrightarrow \\dfrac{\\left( \\sqrt{x}-2 \\right)\\left( \\sqrt{x}+2 \\right)}{\\left( \\sqrt{x}-3 \\right)\\left( \\sqrt{x}+2 \\right)}=\\dfrac{\\left( \\sqrt{x}+1 \\right)\\left( \\sqrt{x}-3 \\right)}{\\left( \\sqrt{x}+2 \\right)\\left( \\sqrt{x}-3 \\right)} \\\\ & \\Rightarrow \\left( \\sqrt{x}-2 \\right).\\left( \\sqrt{x}+2 \\right)=\\left( \\sqrt{x}+1 \\right).\\left( \\sqrt{x}-3 \\right) \\\\ & \\Leftrightarrow x-4=x-2\\sqrt{x}-3 \\\\ & \\Leftrightarrow 2\\sqrt{x}=1 \\\\ & \\Leftrightarrow \\sqrt{x}\\,\\,\\,=\\dfrac{1}{2} \\\\ & \\Leftrightarrow x\\,\\,\\,\\,\\,\\,\\,\\,=\\dfrac{1}{4} \\,\\, (\\text {th\u1ecfa m\u00e3n})\\\\ \\end{align}$<\/span><\/span>"}]}],"id_ques":734},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":"K\u1ebft qu\u1ea3 r\u00fat g\u1ecdn c\u1ee7a bi\u1ec3u th\u1ee9c $\\dfrac{1}{\\sqrt[3]{9}+\\sqrt[3]{15}+\\sqrt[3]{25}}+\\dfrac{\\sqrt[3]{81}}{3}$ l\u00e0: ","select":["A. $\\sqrt[3]{5}$ ","B. $\\sqrt[3]{5}+\\sqrt[3]{3}$ ","C. $\\dfrac{\\sqrt[3]{5}-\\sqrt[3]{3}}{2}$","D. $\\dfrac{\\sqrt[3]{5}+\\sqrt[3]{3}}{2}$"],"hint":"Tr\u1ee5c c\u0103n th\u1ee9c \u1edf m\u1eabu v\u00e0 \u00e1p d\u1ee5ng quy t\u1eafc \u0111\u01b0a th\u1eeba s\u1ed1 ra ngo\u00e0i d\u1ea5u c\u0103n ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: Nh\u00e2n c\u1ea3 t\u1eed v\u00e0 m\u1eabu c\u1ee7a ph\u00e2n th\u1ee9c th\u1ee9 nh\u1ea5t v\u1edbi bi\u1ec3u th\u1ee9c li\u00ean h\u1ee3p c\u1ee7a m\u1eabu.<br\/>B\u01b0\u1edbc 2: Quy \u0111\u1ed3ng v\u00e0 r\u00fat g\u1ecdn<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<br\/><\/span>Ta c\u00f3:<br\/>$ \\,\\,\\,\\,\\,\\dfrac{1}{\\sqrt[3]{9}+\\sqrt[3]{15}+\\sqrt[3]{25}}+\\dfrac{\\sqrt[3]{81}}{3}$<br\/>$=\\dfrac{\\left( \\sqrt[3]{5}-\\sqrt[3]{3} \\right)}{\\left( \\sqrt[3]{9}+\\sqrt[3]{15}+\\sqrt[3]{25} \\right)\\left( \\sqrt[3]{5}-\\sqrt[3]{3} \\right)}\\,$$+\\dfrac{3\\sqrt[3]{3}}{3} $<br\/>$ =\\dfrac{\\sqrt[3]{5}-\\sqrt[3]{3}}{\\sqrt[3]{{{5}^{3}}}-\\sqrt[3]{{{3}^{3}}}}+\\sqrt[3]{3} $<br\/>$=\\dfrac{\\sqrt[3]{5}-\\sqrt[3]{3}}{2}+\\sqrt[3]{3} $<br\/>$ =\\dfrac{\\sqrt[3]{5}+\\sqrt[3]{3}}{2} $ <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 D<\/span><br\/><i>L\u01b0u \u00fd<\/i>$\\dfrac{1}{\\sqrt[3]{{{a}^{2}}}+\\sqrt[3]{ab}+\\sqrt[3]{{{b}^{2}}}}\\,$$=\\dfrac{\\sqrt[3]{a}-\\sqrt[3]{b}}{\\left( \\sqrt[3]{a}-\\sqrt[3]{b} \\right)\\left( \\sqrt[3]{{{a}^{2}}}+\\sqrt[3]{ab}+\\sqrt[3]{{{b}^{2}}} \\right)}\\,$$=\\dfrac{\\sqrt[3]{a}-\\sqrt[3]{b}}{a-b}$ <\/span>","column":2}]}],"id_ques":735},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"select":["A. $\\sqrt{7}$","B. $2+\\sqrt{7}$","C. $4+\\sqrt{7}$"],"ques":"R\u00fat g\u1ecdn bi\u1ec3u th\u1ee9c <br\/>$\\sqrt{16-6\\sqrt{7}}+\\sqrt{29+4\\sqrt{7}}=$?","hint":"Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c trong c\u0103n v\u1ec1 d\u1ea1ng $(a \\pm b)^2$ ","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\,\\,\\,\\sqrt{16-6\\sqrt{7}}+\\sqrt{29+4\\sqrt{7}}$<br\/>$ =\\sqrt{{{3}^{2}}-2.3.\\sqrt{7}+\\sqrt{{{7}^{2}}}}\\,$$+\\sqrt{{{\\left( 2\\sqrt{7} \\right)}^{2}}+2.2\\sqrt{7}.1+{{1}^{2}}}$<br\/>$ =\\sqrt{{{\\left( 3-\\sqrt{7} \\right)}^{2}}}+\\sqrt{{{\\left( 2\\sqrt{7}+1 \\right)}^{2}}}$<br\/>$=3-\\sqrt{7}+2\\sqrt{7}+1\\,\\,\\,\\,(\\text {V\u00ec}\\,\\,3\\,>\\sqrt{7}) $<br\/>$ =4+\\sqrt{7}$<br\/><i>Ghi nh\u1edb:<\/i> V\u1edbi $A$ l\u00e0 m\u1ed9t bi\u1ec3u th\u1ee9c, ta c\u00f3 $\\sqrt{A^2}=|A|=\\left\\{ \\begin{align} & A\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\text{n\u1ebfu}\\,\\,\\,\\,\\,\\,\\,\\,{A}\\ge {0} \\\\ & -A\\,\\,\\,\\,\\text{n\u1ebfu}\\,\\,\\,\\,\\,\\,\\,\\,{A}<{0} \\\\\\end{align} \\right.$<\/span> "}]}],"id_ques":736},{"time":24,"part":[{"title":"Kh\u1eb3ng \u0111\u1ecbnh sau \u0110\u00fang hay Sai","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai7/lv2/img\/9.jpg' \/><\/center>V\u1edbi $a > 0; b > 0$ v\u00e0 $a\\ne b$. R\u00fat g\u1ecdn bi\u1ec3u th\u1ee9c:<br\/>$\\dfrac{a+b-2\\sqrt{ab}}{\\sqrt{a}-\\sqrt{b}}:\\dfrac{1}{\\sqrt{a}+\\sqrt{b}}=a-b$ ","select":["A. \u0110\u00fang","B. Sai"],"hint":"\u0110\u01b0a t\u1eed th\u1ee9c c\u1ee7a ph\u00e2n th\u1ee9c b\u1ecb chia v\u1ec1 d\u1ea1ng $(A-B)^2$ v\u00e0 r\u00fat g\u1ecdn v\u1edbi m\u1eabu th\u1ee9c","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: Bi\u1ebfn \u0111\u1ed5i v\u1ebf tr\u00e1i<br\/>B\u01b0\u1edbc 2: \u00c1p d\u1ee5ng h\u1eb1ng \u0111\u1eb3ng th\u1ee9c $(a-b)(a+b)=a^2-b^2$ v\u00e0 r\u00fat g\u1ecdn.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<br\/><\/span>Ta c\u00f3:<br\/> $\\begin{align}\\text {V\u1ebf tr\u00e1i}=&\\,\\,\\,\\,\\,\\dfrac{a+b-2\\sqrt{ab}}{\\sqrt{a}-\\sqrt{b}}:\\dfrac{1}{\\sqrt{a}+\\sqrt{b}}\\\\&=\\dfrac{{{\\left( \\sqrt{a}-\\sqrt{b} \\right)}^{2}}}{\\sqrt{a}-\\sqrt{b}}.\\left( \\sqrt{a}+\\sqrt{b} \\right)\\\\&=\\left( \\sqrt{a}-\\sqrt{b} \\right)\\left( \\sqrt{a}+\\sqrt{b} \\right)\\\\&=a-b=\\text{V\u1ebf ph\u1ea3i} \\\\ \\end{align}$<br\/> Do \u0111\u00f3 kh\u1eb3ng \u0111\u1ecbnh tr\u00ean l\u00e0 \u0110\u00fang <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 A<\/span><\/span>","column":2}]}],"id_ques":737},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank_random","correct":[[["-3"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai7/lv2/img\/1.png' \/><\/center>Bi\u1ebft $\\sqrt{13-4\\sqrt{3}}=a+b\\sqrt{3}$ (V\u1edbi $a, b \\in \\mathbb Z$)<br\/>Khi \u0111\u00f3 $a-b=$_input_","hint":"Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c d\u01b0\u1edbi d\u1ea5u c\u0103n v\u1ec1 $(a \\pm b)^2$, r\u1ed3i s\u1eeda d\u1ee5ng h\u1eb1ng \u0111\u1eb3ng th\u1ee9c $\\sqrt {A^2}=|A|$ ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c d\u01b0\u1edbi d\u1ea5u c\u0103n v\u1ec1 $(2 \\sqrt{3}-1)^{2}$<br\/>B\u01b0\u1edbc 2: \u00c1p d\u1ee5ng h\u1eb1ng \u0111\u1eb3ng th\u1ee9c $\\sqrt {A^2}=|A|$ v\u00e0 \u0111\u1ed3ng nh\u1ea5t h\u1ec7 s\u1ed1 \u0111\u1ec3 t\u00ecm $a, b$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ta c\u00f3: <br\/>$\\begin{align}&\\,\\,\\,\\,\\,\\sqrt{13-4\\sqrt{3}}\\\\&=\\sqrt{{{\\left( 2\\sqrt{3} \\right)}^{2}}-2.2\\sqrt{3}.1+{{1}^{2}}}\\\\&=\\sqrt{{{\\left( 2\\sqrt{3}-1 \\right)}^{2}}}\\\\&=2\\sqrt{3}-1\\,\\,\\,(\\text {V\u00ec}\\,\\,\\, 2\\sqrt{3}\\, >\\, 1 )\\\\ \\end{align}$<br\/>M\u00e0 $\\sqrt{13-4\\sqrt{3}}=a+b\\sqrt{3}=2\\sqrt{3}-1$<br\/>V\u00ec $a,b \\in \\mathbb Z $ n\u00ean ta c\u00f3: $a= -1;\\, b=2\\,$.<br\/> Do \u0111\u00f3 $ \\,a-b=-1-2=-3$ <br\/> <span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $-3$<\/span><\/span><\/span>"}]}],"id_ques":738},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"select":["A. $A_{min} =-\\dfrac{17}{4}$ khi $a =\\dfrac{25}{4}$","B. $A_{min} =-\\dfrac{15}{4}$ khi $a =\\dfrac{1}{4}$","C. $A_{min} =-\\dfrac{13}{4}$ khi $a =\\dfrac{1}{2}$"],"ques":"Cho $a \\ge0$. T\u00ecm gi\u00e1 tr\u1ecb nh\u1ecf nh\u1ea5t c\u1ee7a bi\u1ec3u th\u1ee9c $A=a-5\\sqrt{a}+2$<br\/>\u0110\u00e1p s\u1ed1: $A_{\\min}=$?khi $a =$ ?<br\/>(K\u1ebft qu\u1ea3 vi\u1ebft d\u01b0\u1edbi d\u1ea1ng ph\u00e2n s\u1ed1)","hint":"Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c $A$ v\u1ec1 d\u1ea1ng $f(a)^2+b$, t\u1eeb \u0111\u00f3 \u0111\u00e1nh gi\u00e1 $A$ \u0111\u1ec3 t\u00ecm gi\u00e1 tr\u1ecb nh\u1ecf nh\u1ea5t. ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>B\u01b0\u1edbc 1: Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c $A$ v\u1ec1 d\u1ea1ng ${\\left( \\sqrt{a}-\\dfrac{5}{2} \\right)}^{2}-\\dfrac{17}{4}$<br\/>B\u01b0\u1edbc 2: \u0110\u00e1nh gi\u00e1 v\u00e0 t\u00ecm gi\u00e1 tr\u1ecb nh\u1ecf nh\u1ea5t c\u1ee7a $A$ <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ta c\u00f3:<br\/>$A=a-5\\sqrt{a}+2\\,$<br\/>$=\\sqrt{{{a}^{2}}}-2.\\dfrac{5}{2}.\\sqrt{a}+ {{\\left( \\dfrac{5}{2} \\right)}^{2}}-\\dfrac{25}{4}+2 \\,$<br\/>$={{\\left( \\sqrt{a}-\\dfrac{5}{2}\\right)}^{2}}-\\dfrac{17}{4}$<br\/>V\u00ec ${{\\left( \\sqrt{a}-\\dfrac{5}{2}\\right)}^{2}}\\ge 0$ v\u1edbi m\u1ecdi $a\\ge 0$ <br\/>N\u00ean $A={{\\left( \\sqrt{a}-\\dfrac{5}{2} \\right)}^{2}}-\\dfrac{17}{4}\\ge -\\dfrac{17}{4}$ v\u1edbi m\u1ecdi $a\\ge 0$<br\/>Do \u0111\u00f3 ${{A}_{\\min }}=-\\dfrac{17}{4}\\Leftrightarrow {{\\left( \\sqrt{a}-\\dfrac{5}{2} \\right)}^{2}}=0\\,$$\\Leftrightarrow \\sqrt{a}=\\dfrac{5}{2}\\Leftrightarrow a=\\dfrac{25}{4}$ <\/span> <\/span> <\/span> "}]}],"id_ques":739},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank_random","correct":[[["2"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai7/lv2/img\/9.jpg' \/><\/center>Th\u1ef1c hi\u1ec7n ph\u00e9p t\u00ednh<br\/>$\\dfrac{\\left( \\sqrt{3}+1 \\right)\\left( 4-2\\sqrt{3} \\right)}{\\sqrt{3}-1}$=_input_","hint":"\u0110\u01b0a $4-2 \\sqrt3$ v\u1ec1 d\u1ea1ng $(a-b)^2$, sau \u0111\u00f3 r\u00fat g\u1ecdn bi\u1ec3u th\u1ee9c","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\begin{align} & \\,\\,\\,\\dfrac{\\left( \\sqrt{3}+1 \\right)\\left( 4-2\\sqrt{3} \\right)}{\\sqrt{3}-1} \\\\ & =\\dfrac{\\left( \\sqrt{3}+1 \\right){{\\left( \\sqrt{3}-1 \\right)}^{2}}}{\\sqrt{3}-1} \\\\ & =\\left( \\sqrt{3}+1 \\right)\\left( \\sqrt{3}-1 \\right) \\\\ & =2 \\\\ \\end{align}$ <br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $2$<\/span><\/span> "}]}],"id_ques":740},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank_random","correct":[[["39"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh:$\\dfrac{2}{3}\\sqrt{9x-27}+\\sqrt{x-3}\\,$$=6+\\sqrt{4x-12}$<br\/>T\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh l\u00e0 $S=${_input_}","hint":"\u00c1p d\u1ee5ng: Quy t\u1eafc \u0111\u01b0a th\u1eeba s\u1ed1 ra ngo\u00e0i d\u1ea5u c\u0103n ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: \u0110\u1eb7t \u0111i\u1ec1u ki\u1ec7n \u0111\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 ngh\u0129a: $\\sqrt{A}$ c\u00f3 ngh\u0129a $\\Leftrightarrow A \\ge 0$<br\/>B\u01b0\u1edbc 2: \u00c1p d\u1ee5ng: Quy t\u1eafc \u0111\u01b0a th\u1eeba s\u1ed1 ra ngo\u00e0i d\u1ea5u c\u0103n : $\\sqrt{A^2B}=|A|\\sqrt{B}$ v\u1edbi $B\\ge 0$<br\/>B\u01b0\u1edbc 3: R\u00fat g\u1ecdn c\u00e1c c\u0103n th\u1ee9c \u0111\u1ed3ng d\u1ea1ng <br\/>B\u01b0\u1edbc 4. Bi\u1ebfn \u0111\u1ed5i ph\u01b0\u01a1ng tr\u00ecnh v\u1ec1 d\u1ea1ng $\\sqrt{A}=B\\Leftrightarrow A=B^2$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>\u0110i\u1ec1u ki\u1ec7n x\u00e1c \u0111\u1ecbnh: $x\\ge 3$<br\/>Ta c\u00f3:<br\/>$\\,\\,\\,\\,\\,\\dfrac{2}{3}\\sqrt{9x-27}+\\sqrt{x-3}=6+\\sqrt{4x-12}$<br\/>$\\Leftrightarrow \\dfrac{2}{3}\\sqrt{9(x-3)}+\\sqrt{x-3}=6+\\sqrt{4(x-3)}$<br\/>$ \\Leftrightarrow 2\\sqrt{x-3}+\\sqrt{x-3}-2\\sqrt{x-3}\\,$$=6$<br\/>$ \\Leftrightarrow \\sqrt{x-3}=6 $<br\/>$ \\Leftrightarrow x-3\\,\\,\\,\\,\\,=36 $<br\/>$ \\Leftrightarrow x\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,=39\\,\\,\\,\\text{(th\u1ecfa m\u00e3n)} $ <br\/>T\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh l\u00e0 $S=\\{39\\}$ <br\/> <span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $39$<\/span><\/span>"}]}],"id_ques":741},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":"<span class='basic_left'>V\u1edbi $x \\ge 0$ v\u00e0 $x \\ne 9$. Cho bi\u1ec3u th\u1ee9c $M=\\left( \\dfrac{2}{\\sqrt{x}-3}+\\dfrac{1}{\\sqrt{x}+3} \\right)\\,$$:\\dfrac{\\sqrt{x}+1}{\\sqrt{x}-3}$ <br\/><b>C\u00e2u 1: <\/b> R\u00fat g\u1ecdn $M$ \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0:<\/span> ","select":["A. $-\\dfrac{3}{\\sqrt{x}+3}$ ","B. $\\dfrac{3}{\\sqrt{x}+3}$ ","C. $\\dfrac{\\sqrt{x}+1}{\\sqrt{x}+3}$","D. $\\dfrac{\\sqrt{x}+1}{\\sqrt{x}-3}$"],"hint":"R\u00fat g\u1ecdn bi\u1ec3u th\u1ee9c trong ngo\u1eb7c tr\u01b0\u1edbc: M\u1eabu th\u1ee9c chung $(\\sqrt{x}-3)(\\sqrt{x}+3)$","explain":"<span class='basic_left'>V\u1edbi $x \\ge 0$ v\u00e0 $x \\ne 9$, ta c\u00f3: <br\/>$\\begin{align} M&=\\left( \\dfrac{2}{\\sqrt{x}-3}+\\dfrac{1}{\\sqrt{x}+3} \\right):\\dfrac{\\sqrt{x}+1}{\\sqrt{x}-3} \\\\ & =\\dfrac{2\\sqrt{x}+6+\\sqrt{x}-3}{\\left( \\sqrt{x}-3 \\right)\\left( \\sqrt{x}+3 \\right)}.\\dfrac{\\sqrt{x}-3}{\\sqrt{x}+1} \\\\ & =\\dfrac{3\\sqrt{x}+3}{\\sqrt{x}+3}.\\dfrac{1}{\\sqrt{x}+1} \\\\ & =\\dfrac{3\\left( \\sqrt{x}+1 \\right)}{\\sqrt{x}+3}.\\dfrac{1}{\\sqrt{x}+1} \\\\ & =\\dfrac{3}{\\sqrt{x}+3} \\\\ \\end{align}$ <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 B<\/span>","column":2}]}],"id_ques":742},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"select":["A. $5 + 3\\sqrt{3}$","B. $3\\sqrt{3}$","C. $6-3\\sqrt{3}$"],"ques":" <span class='basic_left'>Cho bi\u1ec3u th\u1ee9c $M=\\left( \\dfrac{2}{\\sqrt{x}-3}+\\dfrac{1}{\\sqrt{x}+3} \\right):\\dfrac{\\sqrt{x}+1}{\\sqrt{x}-3}\\,\\,\\,$(V\u1edbi $x \\ge 0$ v\u00e0 $x \\ne 9$)<br\/> V\u1edbi $x=4-2\\sqrt{3}$ th\u00ec $M=$?<\/span> ","hint":"Bi\u1ebfn \u0111\u1ed5i gi\u00e1 tr\u1ecb c\u1ee7a $x$ v\u1ec1 d\u1ea1ng $(a-b)^2$ v\u00e0 t\u00ednh $\\sqrt x$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c $4-2\\sqrt{3}=(\\sqrt{3}-1)^2$<br\/>B\u01b0\u1edbc 2: Thay $x$ v\u00e0o t\u00ednh $M$<br\/>B\u01b0\u1edbc 3: Tr\u1ee5c c\u0103n th\u1ee9c \u1edf m\u1eabu <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Theo c\u00e2u 1, v\u1edbi $x \\ge 0$ v\u00e0 $x \\ne 9$, ta c\u00f3:<br\/> $M=\\dfrac{3}{\\sqrt{x}+3}$ <br\/>Theo \u0111\u1ec1 b\u00e0i ta c\u00f3:<br\/> $x=4-2\\sqrt{3}\\Rightarrow\\sqrt{x}=\\sqrt{4-2\\sqrt{3}}=\\sqrt{{{\\left( \\sqrt{3}-1 \\right)}^{2}}}\\,$$=\\sqrt{3}-1$<br\/>Thay $\\sqrt{x}=\\sqrt{3}-1$ v\u00e0o $M$ ta \u0111\u01b0\u1ee3c: <br\/>$M=\\dfrac{3}{\\sqrt{3}-1+3}=\\dfrac{3}{\\sqrt{3}+2}\\,$$=\\dfrac{3\\left( 2-\\sqrt{3} \\right)}{4-(\\sqrt{3})^2}=6-3\\sqrt{3}$<\/span><\/span> "}]}],"id_ques":743},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"fill_the_blank_random","correct":[[["0"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<span class='basic_left'>Cho bi\u1ec3u th\u1ee9c $M=\\left( \\dfrac{2}{\\sqrt{x}-3}+\\dfrac{1}{\\sqrt{x}+3} \\right):\\dfrac{\\sqrt{x}+1}{\\sqrt{x}-3}\\,\\,\\,$(v\u1edbi $x \\ge 0$ v\u00e0 $x \\ne 9$)<br\/> <b> C\u00e2u 3: <\/b> T\u00ecm $x\\in \\mathbb Z$ \u0111\u1ec3 $M\\in \\mathbb Z$<br\/>\u0110\u00e1p s\u1ed1: $x=$_input_<\/span>","hint":"Cho m\u1eabu c\u1ee7a ph\u00e2n th\u1ee9c \u0111\u00e3 r\u00fat g\u1ecdn b\u1eb1ng \u01b0\u1edbc c\u1ee7a t\u1eed ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: T\u00ecm $x$ \u0111\u1ec3 $\\sqrt{x}+3 \\in \u01af(3)$ <br\/>B\u01b0\u1edbc 2: So s\u00e1nh v\u1edbi \u0111i\u1ec1u ki\u1ec7n v\u00e0 k\u1ebft lu\u1eadn<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><span class='basic_left'>Theo c\u00e2u 1, v\u1edbi $x \\ge 0$ v\u00e0 $x \\ne 9$, ta c\u00f3:<br\/> $M=\\dfrac{3}{\\sqrt{x}+3}$ <br\/>$M\\in \\mathbb Z\\Leftrightarrow \\dfrac{3}{\\sqrt{x}+3}\\in \\mathbb Z\\Leftrightarrow \\sqrt{x}+3\\,\\,$ thu\u1ed9c $\u01af (3)=\\left\\{ \\pm 1;\\pm 3 \\right\\}$<br\/>Ta c\u00f3 b\u1ea3ng sau: <br\/><table> <tr> <th>$\\sqrt{x}+3$<\/th> <th>$-3$<\/th> <th>$-1$<\/th> <th>$1$<\/th> <th>$3$<\/th> <\/tr> <tr> <td>$\\sqrt{x}$<\/td> <td>$-6$<\/td> <td>$-4$<\/td> <td>$-2$<\/td> <td>$0$<\/td> <\/tr> <tr> <td>$x$<\/td> <td>lo\u1ea1i <\/td> <td>lo\u1ea1i <\/td> <td>lo\u1ea1i <\/td> <td>$0$<\/td> <\/tr><\/table> <br\/>V\u1eady $x= 0$ th\u00ec $M\\in \\mathbb Z$<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $0$<\/span><\/span><\/span>"}]}],"id_ques":744},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"select":["A. $\\dfrac{7}{2}$","B. $\\dfrac{5}{2}$","C. $\\dfrac{3}{2}$"],"ques":"Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh:$\\sqrt{8x-12}+\\sqrt{18x-27}\\,$$=12-\\sqrt{2x-3}$<br\/>T\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh l\u00e0 $S=${?}","hint":"\u00c1p d\u1ee5ng quy t\u1eafc \u0111\u01b0a th\u1eeba s\u1ed1 ra ngo\u00e0i d\u1ea5u c\u0103n ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: \u0110\u1eb7t \u0111i\u1ec1u ki\u1ec7n \u0111\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 ngh\u0129a: $\\sqrt{A}$ c\u00f3 ngh\u0129a $\\Leftrightarrow A \\ge 0$<br\/>B\u01b0\u1edbc 2: \u00c1p d\u1ee5ng: Quy t\u1eafc \u0111\u01b0a th\u1eeba s\u1ed1 ra ngo\u00e0i d\u1ea5u c\u0103n : $\\sqrt{A^2B}=|A|\\sqrt{B}$ v\u1edbi $B\\ge 0$<br\/>B\u01b0\u1edbc 3: R\u00fat g\u1ecdn c\u00e1c c\u0103n th\u1ee9c \u0111\u1ed3ng d\u1ea1ng <br\/>B\u01b0\u1edbc 4. Bi\u1ebfn \u0111\u1ed5i ph\u01b0\u01a1ng tr\u00ecnh v\u1ec1 d\u1ea1ng $\\sqrt{A}=B\\Leftrightarrow A=B^2$ v\u1edbi $B\\ge 0$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>\u0110i\u1ec1u ki\u1ec7n x\u00e1c \u0111\u1ecbnh: $x\\ge\\dfrac{3}{2}$<br\/>Ta c\u00f3:<br\/>$ \\,\\,\\,\\,\\,\\sqrt{8x-12}+\\sqrt{18x-27}\\,$$=12-\\sqrt{2x-3} $<br\/>$ \\Leftrightarrow 2\\sqrt{2x-3}+3\\sqrt{2x-3}\\,$$+\\sqrt{2x-3}=12 $<br\/>$ \\Leftrightarrow 6\\sqrt{2x-3}=12 $<br\/>$ \\Leftrightarrow \\sqrt{2x-3}\\,\\,\\,=2 $<br\/>$\\Leftrightarrow 2x-3\\,\\,\\,\\,\\,\\,\\,\\,\\,=4 $<br\/>$\\Leftrightarrow x\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,=\\dfrac{7}{2}\\,\\,\\,\\,\\,\\text{(th\u1ecfa m\u00e3n)} $ <br\/>T\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh l\u00e0 $S=\\left\\{ \\dfrac{7}{2} \\right\\}$<\/span>"}]}],"id_ques":745},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"select":["A. $1-2\\sqrt{2}$","B. $1+2\\sqrt{2}$","C. $-2\\sqrt{2}$"],"ques":"T\u00ednh:<br\/>$\\dfrac{1}{\\sqrt{2}-1}-\\dfrac{3\\sqrt{6}-3\\sqrt{10}}{\\sqrt{3}-\\sqrt{5}}=$?","hint":"Tr\u1ee5c c\u0103n th\u1ee9c \u1edf m\u1eabu c\u1ee7a ph\u00e2n th\u1ee9c th\u1ee9 nh\u1ea5t v\u00e0 t\u00ecm th\u1eeba s\u1ed1 chung \u1edf ph\u00e2n th\u1ee9c th\u1ee9 2","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\begin{align} & \\,\\,\\,\\,\\,\\dfrac{1}{\\sqrt{2}-1}-\\dfrac{3\\sqrt{6}-3\\sqrt{10}}{\\sqrt{3}-\\sqrt{5}} \\\\ & =\\dfrac{\\sqrt{2}+1}{(\\sqrt{2})^2-1}-\\dfrac{3\\sqrt{2}\\left( \\sqrt{3}-\\sqrt{5} \\right)}{\\sqrt{3}-\\sqrt{5}} \\\\ & =\\sqrt{2}+1-3\\sqrt{2} \\\\ & =1-2\\sqrt{2} \\\\ \\end{align}$<\/span>"}]}],"id_ques":746},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"","temp":"fill_the_blank_random","correct":[[["<"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai7/lv2/img\/5.jpg' \/><\/center> Cho hai bi\u1ec3u th\u1ee9c $A=\\sqrt{11}-\\sqrt{10}$ v\u00e0 $B=\\sqrt{4}-\\sqrt{3}$ <br\/>So s\u00e1nh $A$ _input_$B$","hint":"$A=\\sqrt{11}-\\sqrt{10}=\\dfrac{1}{\\sqrt{11}+\\sqrt{10}}$<br\/>$B=\\sqrt{4}-\\sqrt{3}=\\dfrac{1}{\\sqrt{4}+\\sqrt{3}}$ ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: Nh\u00e2n c\u1ea3 t\u1eed v\u00e0 m\u1eabu c\u1ee7a $A,B$ v\u1edbi bi\u1ec3u th\u1ee9c li\u00ean h\u1ee3p.<br\/>B\u01b0\u1edbc 2: So s\u00e1nh $A$ v\u00e0 $B$. <br\/>\u00c1p d\u1ee5ng t\u00ednh ch\u1ea5t: N\u1ebfu $a>b$ th\u00ec $\\dfrac{1}{a} < b$ <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ta c\u00f3:<br\/> $A=\\sqrt{11}-\\sqrt{10}\\,$$=\\dfrac{\\left( \\sqrt{11}-\\sqrt{10} \\right)\\left( \\sqrt{11}+\\sqrt{10} \\right)}{\\left( \\sqrt{11}+\\sqrt{10} \\right)}\\,$$=\\dfrac{1}{\\sqrt{11}+\\sqrt{10}}$<br\/>$B=\\sqrt{4}-\\sqrt{3}\\,$$=\\dfrac{\\left( \\sqrt{4}-\\sqrt{3} \\right)\\left( \\sqrt{4}+\\sqrt{3} \\right)}{\\left( \\sqrt{4}+\\sqrt{3} \\right)}\\,$$=\\dfrac{1}{\\sqrt{4}+\\sqrt{3}}$<br\/>M\u00e0: $\\sqrt{4}<\\sqrt{11};\\,\\,\\,\\sqrt{3}<\\sqrt{10}$$\\Rightarrow \\sqrt{11}+\\sqrt{10}>\\sqrt{4}+\\sqrt{3}$ <br\/>Do \u0111\u00f3 $\\dfrac{1}{\\sqrt{11}+\\sqrt{10}}<\\dfrac{1}{\\sqrt{4}+\\sqrt{3}}\\,$$\\Leftrightarrow \\sqrt{11}-\\sqrt{10}<\\sqrt{4}-\\sqrt{3}$ <br\/><span class='basic_pink'>V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n l\u00e0 $<$ <\/span><\/span><\/span>"}]}],"id_ques":747},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":" Bi\u1ec3u th\u1ee9c $2\\sqrt{x+5}+x\\sqrt{4-x}$ c\u00f3 ngh\u0129a khi: ","select":["A. $x \\ge 4$ ","B. $x \\le -5$","C. $-5\\le x\\le 4$","D. $x \\ge 4$ ho\u1eb7c $x \\le - 5$"],"hint":" $\\sqrt{A}$ c\u00f3 ngh\u0129a $\\Leftrightarrow A \\ge 0$ ","explain":"<span class='basic_left'> Bi\u1ec3u th\u1ee9c c\u00f3 ngh\u0129a khi:<br\/>$\\left\\{ \\begin{aligned} & x+5\\ge 0 \\\\ & 4-x\\ge 0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & x\\ge -5 \\\\ & x\\le 4 \\\\ \\end{aligned} \\right.\\,$$\\Leftrightarrow -5\\le x\\le 4$ <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 C<\/span>","column":2}]}],"id_ques":748},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai7/lv2/img\/2.jpg' \/><\/center>K\u1ebft qu\u1ea3 ph\u00e9p t\u00ednh $\\sqrt{7+\\sqrt{24}}.\\sqrt{7-2\\sqrt{6}}$ l\u00e0: ","select":["A. $\\sqrt{49+7\\sqrt{24}-14\\sqrt{6}}$ ","B. $25$","C. $5$","D. $\\sqrt{5}$"],"hint":": \u00c1p d\u1ee5ng quy t\u1eafc nh\u00e2n hai c\u0103n th\u1ee9c v\u00e0 s\u1eed d\u1ee5ng h\u1eb1ng \u0111\u1eb3ng th\u1ee9c","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\begin{align} & \\,\\,\\,\\,\\,\\,\\sqrt{7+\\sqrt{24}}.\\sqrt{7-2\\sqrt{6}} \\\\ & =\\sqrt{7+2\\sqrt{6}}.\\sqrt{7-2\\sqrt{6}} \\\\ & =\\sqrt{\\left( 7+2\\sqrt{6} \\right)\\left( 7-2\\sqrt{6} \\right)} \\\\ & =\\sqrt{{{7}^{2}}-{{\\left( 2\\sqrt{6} \\right)}^{2}}} \\\\ & =\\sqrt{25} \\\\ & =5 \\\\ \\end{align}$ <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 C<\/span>","column":2}]}],"id_ques":749},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai7/lv2/img\/4.jpg' \/><\/center>\u0110i\u1ec1u ki\u1ec7n x\u00e1c \u0111\u1ecbnh c\u1ee7a bi\u1ec3u th\u1ee9c $\\sqrt{2x-1}+\\dfrac{x-1}{x-6}$ l\u00e0:","select":["A. $x\\ge \\dfrac{1}{2}$ v\u00e0 $x \\ne 6$ ","B. $x\\ge -\\dfrac{1}{2}$ v\u00e0 $x \\ne 6$","C. $x\\ge \\dfrac{1}{2}$ v\u00e0 $x > 6$","D. $x\\ge \\dfrac{1}{2}$ v\u00e0 $x \\ne 1$"],"hint":"","explain":"<span class='basic_left'>\u0110i\u1ec1u ki\u1ec7n x\u00e1c \u0111\u1ecbnh: <br\/>$\\left\\{ \\begin{aligned} & 2x-1\\ge 0 \\\\ & x-6\\ne 0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & x\\ge \\dfrac{1}{2} \\\\ & x\\ne 6 \\\\ \\end{aligned} \\right.$ <br\/> <span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 A<\/span>","column":2}]}],"id_ques":750}],"lesson":{"save":0,"level":2}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý