đang tải bài tập bài
{"segment":[{"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":10,"ques":"<span class='basic_left'> Trong h\u1ec7 tr\u1ee5c t\u1ecda \u0111\u1ed9 $Oxy$, cho \u0111\u01b0\u1eddng tr\u00f2n t\u00e2m $I(1; 1)$, b\u00e1n k\u00ednh 4. H\u00e3y x\u00e1c \u0111\u1ecbnh v\u1ecb tr\u00ed t\u01b0\u01a1ng \u0111\u1ed1i c\u1ee7a \u0111i\u1ec3m $M(3; 0)$ \u0111\u1ed1i v\u1edbi \u0111\u01b0\u1eddng tr\u00f2n. <\/span> ","select":["A. $M$ n\u1eb1m tr\u00ean \u0111\u01b0\u1eddng tr\u00f2n ","B. $M$ n\u1eb1m trong \u0111\u01b0\u1eddng tr\u00f2n","C. $M$ n\u1eb1m ngo\u00e0i \u0111\u01b0\u1eddng tr\u00f2n"],"hint":"Bi\u1ec3u di\u1ec5n h\u00ecnh tr\u00ean h\u1ec7 tr\u1ee5c t\u1ecda \u0111\u1ed9 ","explain":"<span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai12/lv3/img\/h927_21.png' \/><\/center> D\u1ec5 th\u1ea5y $M$ n\u1eb1m trong \u0111\u01b0\u1eddng tr\u00f2n <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n l\u00e0 B. <\/span><\/span>","column":1}],"id_ques":1271},{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["7"],["9"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"Cho hai \u0111\u01b0\u1eddng tr\u00f2n $(O; R)$; $(O'; r)$ v\u00e0 \u0111o\u1ea1n n\u1ed1i t\u00e2m $d$. H\u00e3y \u0111i\u1ec1n gi\u00e1 tr\u1ecb th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng trong b\u1ea3ng sau <table><tr><th>$R (cm)$<br><\/th><th> $r (cm)$<br><\/th><th>$d (cm)$<br><\/th> <th>V\u1ecb tr\u00ed t\u01b0\u01a1ng \u0111\u1ed1i c\u1ee7a $(O)$ v\u00e0 $(O')$<br><\/th> <\/tr><tr><td>_input_<\/td><td>3<\/td><td>4<\/td> <td>Ti\u1ebfp x\u00fac trong <\/td> <\/tr><tr><td>6<\/td><td>3<\/td><td>_input_<\/td> <td>Ti\u1ebfp x\u00fac ngo\u00e0i<\/td> <\/tr><\/table>","explain":"<span class='basic_left'> Hai \u0111\u01b0\u1eddng tr\u00f2n ti\u1ebfp x\u00fac trong n\u1ebfu v\u00e0 ch\u1ec9 n\u1ebfu <br\/> $ d = R - r$ <br\/> $\\Rightarrow R = d + r$$ = 3 + 4 $$= 7\\, (cm)$ <br\/> Hai \u0111\u01b0\u1eddng tr\u00f2n ti\u1ebfp x\u00fac ngo\u00e0i n\u1ebfu v\u00e0 ch\u1ec9 n\u1ebfu <br\/> $ d = R + r$ $= 6 + 3 $$= 9\\, (cm)$ <br\/> <span class='basic_pink'> V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $7$ v\u00e0 $9.$ <\/span> <\/span>"}],"id_ques":1272},{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":10,"ques":"C\u00f3 bao nhi\u00eau \u0111\u01b0\u1eddng tr\u00f2n \u0111i qua hai \u0111i\u1ec3m ph\u00e2n bi\u1ec7t? ","select":["A. M\u1ed9t ","B. Hai","C. V\u00f4 s\u1ed1","D. Kh\u00f4ng c\u00f3"],"explain":" <span class='basic_left'> \u0110\u01b0\u1eddng tr\u00f2n t\u00e2m $I$ \u0111i qua hai \u0111i\u1ec3m ph\u00e2n bi\u1ec7t $A$ v\u00e0 $B$ th\u00ec $IA = IB$ <br\/> Suy ra $I$ thu\u1ed9c \u0111\u01b0\u1eddng trung tr\u1ef1c $d$ c\u1ee7a $AB$ <br\/> M\u00e0 c\u00f3 v\u00f4 s\u1ed1 \u0111i\u1ec3m thu\u1ed9c $d$ <br\/> V\u1eady c\u00f3 v\u00f4 s\u1ed1 \u0111\u01b0\u1eddng tr\u00f2n \u0111i qua hai \u0111i\u1ec3m ph\u00e2n bi\u1ec7t <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n l\u00e0 C. <\/span><\/span>","column":4}],"id_ques":1273},{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":10,"ques":"C\u00f3 bao nhi\u00eau \u0111\u01b0\u1eddng tr\u00f2n \u0111i qua ba \u0111i\u1ec3m th\u1eb3ng h\u00e0ng? ","select":["A. M\u1ed9t ","B. Hai","C. V\u00f4 s\u1ed1","D. Kh\u00f4ng c\u00f3"],"explain":" Kh\u00f4ng t\u1ed3n t\u1ea1i \u0111\u01b0\u1eddng tr\u00f2n \u0111i qua ba \u0111i\u1ec3m th\u1eb3ng h\u00e0ng <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n l\u00e0 D. <\/span>","column":4}],"id_ques":1274},{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"fill_the_blank","correct":[[["2"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":"<span class='basic_left'> Cho h\u00ecnh v\u1ebd: <br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai12/lv3/img\/h927_22.png' \/><\/center> <br\/> Bi\u1ebft $OK$ b\u1eb1ng $1 cm$, $OH$ b\u1eb1ng $3 cm$, $CD$ b\u1eb1ng $6 cm$. T\u00ednh \u0111\u1ed9 d\u00e0i d\u00e2y $AB$. <br\/> <b> \u0110\u00e1p s\u1ed1: <\/b> $AB =$ _input_ $(cm)$ <\/span>","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai12/lv3/img\/h927_22.1.png' \/><\/center> Ta c\u00f3: $OH\\bot AB$$\\Rightarrow H$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $AB$ (\u0111\u1ecbnh l\u00ed \u0111\u01b0\u1eddng k\u00ednh v\u00e0 d\u00e2y cung) <br\/> $OK\\bot CD$$\\Rightarrow K$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $CD$ (\u0111\u1ecbnh l\u00ed \u0111\u01b0\u1eddng k\u00ednh v\u00e0 d\u00e2y cung) <br\/> $\\Rightarrow CK=\\dfrac{CD}{2}$$=3(cm)$ <br\/> $\\Delta OKC$ vu\u00f4ng t\u1ea1i $K$ <br\/> $OC^2 = OK^2 + CK^2$ (\u0111\u1ecbnh l\u00ed Pitago) <br\/> $\\Rightarrow OC=\\sqrt{O{{K}^{2}}+C{{K}^{2}}}$ <br\/> $=\\sqrt{3^2 + 1^2}$ <br\/> $=\\sqrt{10}(cm)$ <br\/> $\\Rightarrow OA=OC$$=\\sqrt{10} (cm)$ <br\/> $\\Delta AHO$ vu\u00f4ng t\u1ea1i $H$ <br\/> $OA^2 = OH^2 + AH^2$ (\u0111\u1ecbnh l\u00ed Pitago) <br\/> $\\Rightarrow AH=\\sqrt{A{{O}^{2}}-O{{H}^{2}}}$ <br\/> $=1\\,(cm)$ <br\/> $\\Rightarrow AB=2AH$$=2\\,(cm)$ <br\/><span class='basic_pink'>V\u1eady k\u1ebft qu\u1ea3 c\u1ea7n \u0111i\u1ec1n l\u00e0 $2.$ <\/span><\/span>"}],"id_ques":1275},{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u","temp":"multiple_choice","correct":[[2]],"list":[{"point":10,"ques":"Cho \u0111\u01b0\u1eddng tr\u00f2n $(O; 2 cm)$, \u0111\u01b0\u1eddng k\u00ednh AB. Tr\u00ean ti\u1ebfp tuy\u1ebfn t\u1ea1i $A$ l\u1ea5y \u0111i\u1ec3m $C$ sao cho $AC = 3 cm$. $BC$ c\u1eaft \u0111\u01b0\u1eddng tr\u00f2n t\u1ea1i $D$. <br\/> <b> C\u00e2u a: <\/b> Khi \u0111\u00f3 \u0111\u1ed9 d\u00e0i $AD$ l\u00e0: ","select":["A. $1,2 cm$ ","B. $2,4 cm$","C. $2, 75 cm$","D. $ 4,8 cm$"],"hint":"S\u1eed d\u1ee5ng h\u1ec7 th\u1ee9c l\u01b0\u1ee3ng trong tam gi\u00e1c vu\u00f4ng","explain":" <span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai12/lv3/img\/h927_23.png' \/><\/center> Ta c\u00f3: $AB=2OA=4\\,(cm)$ <br\/> $AC$ l\u00e0 ti\u1ebfp tuy\u1ebfn c\u1ee7a $(O)$ $\\Rightarrow \\widehat{CAB}={{90}^{o}}$ <br\/> X\u00e9t $\\Delta ABD$ c\u00f3: <br\/> $OA = OB = OD = 2cm$ <br\/> $\\Rightarrow \\Delta ADB$ vu\u00f4ng t\u1ea1i D (t\u00ednh ch\u1ea5t trung tuy\u1ebfn trong tam gi\u00e1c vu\u00f4ng) <br\/> $\\Rightarrow\\widehat{ADB}={{90}^{o}}$ <br\/> $\\Rightarrow AD\\bot BC$ <br\/>X\u00e9t $\\Delta ACB$ vu\u00f4ng t\u1ea1i $A$ $;AD\\bot BC$ <br\/> $\\dfrac{1}{A{{D}^{2}}}=\\dfrac{1}{A{{C}^{2}}}+\\dfrac{1}{A{{B}^{2}}}$ (h\u1ec7 th\u1ee9c l\u01b0\u1ee3ng trong tam gi\u00e1c vu\u00f4ng)<br\/> $=\\dfrac{1}{9}+\\dfrac{1}{16}$ <br\/> $=\\dfrac{25}{144}$ <br\/> $\\Rightarrow A{{D}^{2}}=\\dfrac{144}{25}$ <br\/> $\\Rightarrow AD=\\dfrac{12}{5}$$=2,4(cm)$ <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n l\u00e0 B. <\/span><\/span>","column":4}],"id_ques":1276},{"time":3,"title":"<span class='basic_left'> Cho \u0111\u01b0\u1eddng tr\u00f2n $(O; 2 cm)$, \u0111\u01b0\u1eddng k\u00ednh AB. Tr\u00ean ti\u1ebfp tuy\u1ebfn t\u1ea1i $A$ l\u1ea5y \u0111i\u1ec3m $C$ sao cho $AC = 3 cm$. $BC$ c\u1eaft \u0111\u01b0\u1eddng tr\u00f2n t\u1ea1i $D$. G\u1ecdi $I$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $BD$, $K$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $AC$. <br\/> <b> C\u00e2u b: <\/b> Ch\u1ee9ng minh r\u1eb1ng b\u1ed1n \u0111i\u1ec3m $A, C, I, O$ c\u00f9ng thu\u1ed9c m\u1ed9t \u0111\u01b0\u1eddng tr\u00f2n.<\/span>","title_trans":"S\u1eafp x\u1ebfp th\u1ee9 t\u1ef1 c\u00e1c b\u01b0\u1edbc ch\u1ee9ng minh","temp":"sequence","correct":[[[4],[1],[3],[5],[6],[2]]],"list":[{"point":10,"image":"https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai12/lv3/img\/h927_23.1.png","left":["X\u00e9t $\\Delta OAC$ vu\u00f4ng t\u1ea1i $A$ $\\Rightarrow HO=HC=HA$ (t\u00ednh ch\u1ea5t trung tuy\u1ebfn) (2) ","G\u1ecdi $H$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $OC$ $\\Rightarrow HO= HC$"," X\u00e9t $\\Delta OIC$ vu\u00f4ng t\u1ea1i $I$ $\\Rightarrow HO=HC=HI$ (t\u00ednh ch\u1ea5t trung tuy\u1ebfn) (1) "," T\u1eeb (1) v\u00e0 (2) $\\Rightarrow HO=HC=HI=HA$ ","$\\Leftrightarrow A,C,I,O$ c\u00f9ng thu\u1ed9c m\u1ed9t \u0111\u01b0\u1eddng tr\u00f2n","$I$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $BD$ $\\Rightarrow OI\\bot BD$ (\u0111\u1ecbnh l\u00ed \u0111\u01b0\u1eddng k\u00ednh v\u00e0 d\u00e2y cung) <br\/> $\\Rightarrow OI\\bot BC$ $\\Rightarrow \\widehat{OIC}={{90}^{o}}$"],"top":75,"explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai12/lv3/img\/h927_23.1.png' \/><\/center> G\u1ecdi $H$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $OC$ $\\Rightarrow HO= HC$ <br\/> $I$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $BD$ <br\/> $\\Rightarrow OI\\bot BD$ (\u0111\u1ecbnh l\u00ed \u0111\u01b0\u1eddng k\u00ednh v\u00e0 d\u00e2y cung) <br\/> $\\Rightarrow OI\\bot BC$ <br\/> $\\Rightarrow \\widehat{OIC}={{90}^{o}}$ <br\/> X\u00e9t $\\Delta OIC$ vu\u00f4ng t\u1ea1i $I$ <br\/> $\\Rightarrow HO=HC=HI$ (t\u00ednh ch\u1ea5t trung tuy\u1ebfn trong tam gi\u00e1c vu\u00f4ng) (1) <br\/> X\u00e9t $\\Delta OAC$ vu\u00f4ng t\u1ea1i $A$ <br\/> $\\Rightarrow HO=HC=HA$ (t\u00ednh ch\u1ea5t trung tuy\u1ebfn trong tam gi\u00e1c vu\u00f4ng) (2) <br\/> T\u1eeb (1) v\u00e0 (2) $\\Rightarrow HO=HC=HI=HA$ <br\/> $\\Leftrightarrow A,C,I,O$ c\u00f9ng thu\u1ed9c m\u1ed9t \u0111\u01b0\u1eddng tr\u00f2n <\/span>"}],"id_ques":1277},{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u","temp":"fill_the_blank","correct":[[["90"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":"<span class='basic_left'>Cho \u0111\u01b0\u1eddng tr\u00f2n $(O; 2 cm)$, \u0111\u01b0\u1eddng k\u00ednh $AB.$ Tr\u00ean ti\u1ebfp tuy\u1ebfn t\u1ea1i $A$ l\u1ea5y \u0111i\u1ec3m $C$ sao cho $AC = 3 cm$. $BC$ c\u1eaft \u0111\u01b0\u1eddng tr\u00f2n t\u1ea1i $D$. G\u1ecdi $I$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $BD$, $K$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $AC$. <br\/> <b> C\u00e2u c: <\/b> T\u00ednh s\u1ed1 \u0111o g\u00f3c $\\widehat{KDO}$. <br\/> <b> \u0110\u00e1p s\u1ed1: <\/b> $\\widehat{KDO} =$ _input_ $^o$ <\/span>","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai12/lv3/img\/h927_23.2.png' \/><\/center>X\u00e9t $\\Delta ADC$ vu\u00f4ng t\u1ea1i $D$ <br\/> $K$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $AC$ <br\/> $\\Rightarrow KD=KA=KC$ (t\u00ednh ch\u1ea5t trung tuy\u1ebfn trong tam gi\u00e1c vu\u00f4ng) <br\/> X\u00e9t $\\Delta KDO$ v\u00e0 $\\Delta KAO$ c\u00f3 <br\/> $KD=KA$ <br\/> $OA=OD$ <br\/> $OK$ chung <br\/> $\\Rightarrow \\Delta KDO=\\Delta KAO$ (c. c. c)<br\/> $\\Rightarrow \\widehat{KAO}=\\widehat{KDO}$$={{90}^{o}}$ <br\/><span class='basic_pink'>V\u1eady k\u1ebft qu\u1ea3 c\u1ea7n \u0111i\u1ec1n l\u00e0 $90.$ <\/span><\/span>"}],"id_ques":1278},{"title":"\u0110i\u1ec1n d\u1ea5u (>;<;=) th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"fill_the_blank","correct":[[[">"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":"<span class='basic_left'> Cho \u0111\u01b0\u1eddng tr\u00f2n $(O; 2 cm)$, \u0111\u01b0\u1eddng k\u00ednh $AB.$ Tr\u00ean ti\u1ebfp tuy\u1ebfn t\u1ea1i $A$ l\u1ea5y \u0111i\u1ec3m $C$ sao cho $AC = 3 cm$. $BC$ c\u1eaft \u0111\u01b0\u1eddng tr\u00f2n t\u1ea1i $D$. G\u1ecdi $I$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $BD$, $K$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $AC$. <br\/> <b> C\u00e2u d: <\/b> So s\u00e1nh hai g\u00f3c $ACO$ v\u00e0 $DCO$. <br\/> <b> \u0110\u00e1p s\u1ed1: <\/b> $\\widehat{ACO} $ _input_ $\\widehat{DCO}$<\/span>","hint":"So s\u00e1nh $\\sin \\widehat{DCO}$ v\u00e0 $\\sin \\widehat{ACO}$ ","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai12/lv3/img\/h927_23.2.png' \/><\/center>X\u00e9t $\\Delta CAO$ vu\u00f4ng t\u1ea1i $A$ <br\/> $\\sin \\widehat{ACO}=\\dfrac{AO}{CO}$ <br\/> $\\Delta ICO$ vu\u00f4ng t\u1ea1i $I$ <br\/> $\\sin \\widehat{DCO}$$=\\sin \\widehat{ICO}=$$\\dfrac{IO}{CO}$ <br\/> M\u00e0 $IO < AO$ <br\/> $\\Rightarrow \\sin \\widehat{DCO}<\\sin \\widehat{ACO}$ <br\/> $\\Rightarrow \\widehat{DCO}<\\widehat{ACO}$ ( V\u00ec $\\widehat{DCO}$ v\u00e0 $\\widehat{ACO}$ nh\u1ecdn) <br\/><span class='basic_pink'>V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n l\u00e0 d\u1ea5u $>$ <\/span><\/span>"}],"id_ques":1279},{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u","temp":"multiple_choice","correct":[[3]],"list":[{"point":10,"ques":"T\u00ednh b\u00e1n k\u00ednh \u0111\u01b0\u1eddng tr\u00f2n ngo\u1ea1i ti\u1ebfp tam gi\u00e1c c\u00f3 \u0111\u1ed9 d\u00e0i c\u00e1c c\u1ea1nh l\u00e0 $3cm, 4cm, 5cm$. ","select":["A. $0,5\\, cm$ ","B. $1\\, cm$","C. $2,5\\, cm$","D. $ 5\\, cm$"],"hint":"S\u1eed d\u1ee5ng h\u1ec7 th\u1ee9c l\u01b0\u1ee3ng trong tam gi\u00e1c vu\u00f4ng","explain":" <span class='basic_left'> Ta c\u00f3: $3^2 + 4^2 $$= 5^2$ <br\/> $\\Rightarrow$ Tam gi\u00e1c \u0111\u00f3 l\u00e0 tam gi\u00e1c vu\u00f4ng (\u0111\u1ecbnh l\u00ed Pitago \u0111\u1ea3o) <br\/> Suy ra b\u00e1n k\u00ednh \u0111\u01b0\u1eddng tr\u00f2n ngo\u1ea1i ti\u1ebfp b\u1eb1ng m\u1ed9t n\u1eeda c\u1ea1nh huy\u1ec1n <br\/> V\u1eady b\u00e1n k\u00ednh \u0111\u01b0\u1eddng tr\u00f2n ngo\u1ea1i ti\u1ebfp b\u1eb1ng $2,5\\, cm$ <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n l\u00e0 C. <\/span><\/span>","column":4}],"id_ques":1280}],"id_ques":0}],"lesson":{"save":1,"level":3,"time":44}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý