đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o c\u00e1c \u00f4 tr\u1ed1ng trong b\u1ea3ng","title_trans":"","temp":"fill_the_blank","correct":[[["10"],["16"],["-7"],["10"],["2"],["-3"]]],"list":[{"point":5,"width":60,"type_input":"","ques":"<span class='basic_left'>Bi\u1ebft c\u00e1c ph\u01b0\u01a1ng tr\u00ecnh sau c\u00f3 hai nghi\u1ec7m ${{x}_{1}}$ v\u00e0 ${{x}_{2}}$. T\u00ednh t\u1ed5ng v\u00e0 t\u00edch hai nghi\u1ec7m r\u1ed3i \u0111i\u1ec1n v\u00e0o b\u1ea3ng sau:<\/span><br\/><table><tr><th>Ph\u01b0\u01a1ng tr\u00ecnh<br><\/th><th>${{x}_{1}}+{{x}_{2}}$ <br><\/th><th>${{x}_{1}}.{{x}_{2}}$ <br><\/th><\/tr><tr><td>${{x}^{2}}-10x+16=0$ <\/td><td>_input_<\/td><td>_input_<\/td><\/tr><tr><td>${{x}^{2}}+7x+10=0$ <\/td><td>_input_<\/td><td>_input_<\/td><\/tr><tr><td>$2{{x}^{2}}-4x-6=0$ <\/td><td>_input_<\/td><td>_input_<\/td><\/tr><\/table>","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<\/span><br\/>\u00c1p d\u1ee5ng h\u1ec7 th\u1ee9c Vi \u2013 \u00e9t:<br\/> N\u1ebfu ph\u01b0\u01a1ng tr\u00ecnh $a{{x}^{2}}+bx+c=0$ $\\left( a\\ne 0 \\right)$ c\u00f3 hai nghi\u1ec7m ${{x}_{1}};{{x}_{2}}$ th\u00ec $\\left\\{ \\begin{align} & {{x}_{1}}+{{x}_{2}}=-\\dfrac{b}{a} \\\\ & {{x}_{1}}.{{x}_{2}}=\\dfrac{c}{a} \\\\ \\end{align} \\right.$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/>Ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}-10x+16=0$ c\u00f3 ${{x}_{1}}+{{x}_{2}}=10;{{x}_{1}}.{{x}_{2}}=16$ <br\/>Ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}+7x+10=0$ c\u00f3 ${{x}_{1}}+{{x}_{2}}=-7;{{x}_{1}}.{{x}_{2}}=10$<br\/>Ph\u01b0\u01a1ng tr\u00ecnh $2{{x}^{2}}-4x-6=0$ c\u00f3 ${{x}_{1}}+{{x}_{2}}=-\\dfrac{-4}{2}=2;{{x}_{1}}.{{x}_{2}}=\\dfrac{-6}{2}=-3$<br\/>Ta c\u00f3 b\u1ea3ng k\u1ebft qu\u1ea3:<br\/><table><tr><th>Ph\u01b0\u01a1ng tr\u00ecnh<br><\/th><th>${{x}_{1}}+{{x}_{2}}$ <br><\/th><th>${{x}_{1}}.{{x}_{2}}$ <br><\/th><\/tr><tr><td>${{x}^{2}}-10x+16=0$ <\/td><td>$10$<\/td><td>$16$<\/td><\/tr><tr><td>${{x}^{2}}+7x+10=0$ <\/td><td>$-7$<\/td><td>$10$<\/td><\/tr><tr><td>$2{{x}^{2}}-4x-6=0$ <\/td><td>$2$<\/td><td>$-3$<\/td><\/tr><\/table><\/span><\/span>"}]}],"id_ques":871},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":"Ph\u01b0\u01a1ng tr\u00ecnh $4{{x}^{2}}-4x+3=0$ c\u00f3 t\u1ed5ng c\u00e1c nghi\u1ec7m b\u1eb1ng $1$ v\u00e0 t\u00edch c\u00e1c nghi\u1ec7m b\u1eb1ng $\\dfrac{3}{4},$ <b>\u0111\u00fang<\/b> hay <b>sai<\/b>?","select":["A. \u0110\u00fang ","B. Sai"],"hint":"Ki\u1ec3m tra xem ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 nghi\u1ec7m hay kh\u00f4ng.","explain":"<span class='basic_left'>Ph\u01b0\u01a1ng tr\u00ecnh $4{{x}^{2}}-4x+3=0$ c\u00f3 $\\Delta '=4-12=-8<0$ n\u00ean v\u00f4 nghi\u1ec7m<br\/>V\u00ec v\u1eady kh\u00f4ng th\u1ec3 n\u00f3i \u0111\u1ebfn t\u1ed5ng v\u00e0 t\u00edch c\u00e1c nghi\u1ec7m<br\/>V\u1eady kh\u1eb3ng \u0111\u1ecbnh tr\u00ean l\u00e0 sai<br\/><span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n ch\u1ecdn l\u00e0 B<\/span><br\/><span class='basic_green'>L\u01b0u \u00fd:<\/span><br\/>\u0110\u1ec3 t\u00ednh \u0111\u01b0\u1ee3c t\u1ed5ng v\u00e0 t\u00edch hai nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh theo h\u1ec7 th\u1ee9c Vi - \u00e9t, ta c\u1ea7n ki\u1ec3m tra ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00e3 cho c\u00f3 l\u00e0 ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai v\u00e0 c\u00f3 nghi\u1ec7m hay kh\u00f4ng. <\/span>","column":2}]}],"id_ques":872},{"time":24,"part":[{"title":"Cho ph\u01b0\u01a1ng tr\u00ecnh $2{{x}^{2}}+9x-5=0$ ","title_trans":"L\u1ef1a ch\u1ecdn \u0111\u00fang hay sai","temp":"true_false","correct":[["f","t","f"]],"list":[{"point":5,"image":"img\/1.png","col_name":["","\u0110\u00fang","Sai"],"arr_ques":["Ph\u01b0\u01a1ng tr\u00ecnh lu\u00f4n c\u00f3 hai nghi\u1ec7m c\u00f9ng d\u1ea5u","$-5$ l\u00e0 m\u1ed9t nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh","$-\\dfrac{1}{2}$ l\u00e0 m\u1ed9t nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh."],"hint":"","explain":["Sai v\u00ec ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00e3 cho c\u00f3 $a.c=-10<0$ n\u00ean ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00e3 cho c\u00f3 hai nghi\u1ec7m tr\u00e1i d\u1ea5u.","<br\/>\u0110\u00fang v\u00ec v\u1edbi $x=-5,$ th\u00ec $2{{x}^{2}}+9x-5=2.{{\\left( -5 \\right)}^{2}}+9.\\left( -5 \\right)-5=0$ n\u00ean $-5$ l\u00e0 m\u1ed9t nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00e3 cho.","<br\/>Sai: Theo kh\u1eb3ng \u0111\u1ecbnh 2 th\u00ec $x=-5$ l\u00e0 m\u1ed9t nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh n\u00ean theo h\u1ec7 th\u1ee9c Vi-\u00e9t, ta c\u00f3: ${{x}_{1}}.{{x}_{2}}=-\\dfrac{5}{2}\\Rightarrow {{x}_{2}}=-\\dfrac{5}{2}:{{x}_{1}}=-\\dfrac{5}{2}:\\left( -5 \\right)=\\dfrac{1}{2}$ "]}]}],"id_ques":873},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":"Hai s\u1ed1 $5$ v\u00e0 $-8$ l\u00e0 hai nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh","select":["A. ${{x}^{2}}-3x+40=0$ ","B. ${{x}^{2}}-3x-40=0$","C. ${{x}^{2}}+3x-40=0$ ","D. ${{x}^{2}}+13x-40=0$ "],"hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<\/span><br\/>B\u01b0\u1edbc 1: T\u00ednh t\u1ed5ng hai nghi\u1ec7m $S={{x}_{1}}+{{x}_{2}}$ v\u00e0 t\u00edch hai nghi\u1ec7m $P={{x}_{1}}{{x}_{2}}$ <br\/>B\u01b0\u1edbc 2: Ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ${{x}_{1}};{{x}_{2}}$ l\u00e0 ${{x}^{2}}-Sx+P=0$ <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/>Ta c\u00f3 t\u1ed5ng $S=5+\\left( -8 \\right)=-3$ v\u00e0 t\u00edch $P=5.\\left( -8 \\right)=-40$ <br\/>V\u1eady hai s\u1ed1 $5$ v\u00e0 $-8$ l\u00e0 hai nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}+3x-40=0$<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 C <\/span><\/span>","column":2}]}],"id_ques":874},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["-2"],["-4"]]],"list":[{"point":5,"width":50,"content":"","type_input":"","ques":"L\u1eadp ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai c\u00f3 hai nghi\u1ec7m b\u1eb1ng $1-\\sqrt{5}$ v\u00e0 $1+\\sqrt{5}$ <br\/><b>\u0110\u00e1p s\u1ed1: <\/b> Ph\u01b0\u01a1ng tr\u00ecnh l\u1eadp \u0111\u01b0\u1ee3c l\u00e0: $X^2+$_input_$X+$_input_$=0$ ","hint":"T\u00ednh t\u1ed5ng v\u00e0 t\u00edch hai s\u1ed1 r\u1ed3i l\u1eadp ph\u01b0\u01a1ng tr\u00ecnh","explain":"<span class='basic_left'>Ta c\u00f3 t\u1ed5ng $S=\\left( 1-\\sqrt{5} \\right)+\\left( 1+\\sqrt{5} \\right)=2$ v\u00e0 t\u00edch $P=\\left( 1-\\sqrt{5} \\right)\\left( 1+\\sqrt{5} \\right)=1-5=-4$ <br\/>V\u1eady ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai c\u00f3 hai nghi\u1ec7m b\u1eb1ng $1-\\sqrt{5}$ v\u00e0 $1+\\sqrt{5}$ l\u00e0 ${{X}^{2}}-2X-4=0$ <br\/> <span class='basic_pink'>V\u1eady c\u00e1c s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u1ea7n l\u01b0\u1ee3t l\u00e0 $-2$ v\u00e0 $-4.$<\/span><\/span>"}]}],"id_ques":875},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":"T\u00ecm hai s\u1ed1 $a$ v\u00e0 $b$ bi\u1ebft $a+b=10;$ $a.b=21$ ","select":["A. $a=7;b=3$","B. $a=3;b=7$","C. $a=-3;b=13$","D. C\u1ea3 A v\u00e0 B"],"hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>B\u00e0i to\u00e1n: T\u00ecm hai s\u1ed1 bi\u1ebft t\u1ed5ng $S$ v\u00e0 t\u00edch $P$<br\/>Hai s\u1ed1 c\u1ea7n t\u00ecm l\u00e0 nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai $X^2-SX+P=0$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Hai s\u1ed1 $a, b$ c\u1ea7n t\u00ecm l\u00e0 nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai $X^2-10X+21=0$<br\/>$\\Delta '=25-21=4$<br\/> Suy ra ${{X}_{1}}=5+2=7;{{X}_{2}}=5-2=3$ <br\/>V\u1eady $a=7;b=3$ ho\u1eb7c $a=3;b=7$<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 D <\/span><br\/><span class='basic_green'>Nh\u1eadn x\u00e9t: <\/span>\u0110i\u1ec1u ki\u1ec7n \u0111\u1ec3 t\u1ed3n t\u1ea1i hai s\u1ed1 $a, b$ l\u00e0 ${{S}^{2}}\\ge 4P$ <\/span>","column":2}]}],"id_ques":876},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"\u0110i\u1ec1n \u0111\u00e1p \u00e1n d\u01b0\u1edbi d\u1ea1ng s\u1ed1 nguy\u00ean ho\u1eb7c s\u1ed1 th\u1eadp ph\u00e2n","temp":"fill_the_blank_random","correct":[[["3"],["-2,5"]]],"list":[{"point":5,"width":60,"type_input":"","ques":"<span class='basic_left'>T\u00ecm hai s\u1ed1 bi\u1ebft t\u1ed5ng c\u1ee7a ch\u00fang l\u00e0 $\\dfrac{1}{2}$ v\u00e0 t\u00edch c\u1ee7a ch\u00fang l\u00e0 $-\\dfrac{15}{2}$ <br\/>Hai s\u1ed1 c\u1ea7n t\u00ecm l\u00e0 _input_ v\u00e0 _input_<\/span>","hint":"","explain":"<span class='basic_left'>G\u1ecdi hai s\u1ed1 c\u1ea7n t\u00ecm l\u00e0 $u$ v\u00e0 $v$. Theo \u0111\u1ec1 ra, ta c\u00f3: <br\/>$u+v=\\dfrac{1}{2}$ v\u00e0 $u.v=-\\dfrac{15}{2}$<br\/>Khi \u0111\u00f3, hai s\u1ed1 $u,$ $v$ l\u00e0 nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai<br\/>$\\begin{align} & {{X}^{2}}-\\dfrac{1}{2}X-\\dfrac{15}{2}=0 \\\\ & \\Leftrightarrow 2{{X}^{2}}-X-15=0 \\\\ \\end{align}$ <br\/>$\\Delta =1-4.2\\left( -15 \\right)=121$ <br\/>Suy ra ${{X}_{1}}=\\dfrac{1+11}{4}=3;{{X}_{2}}=\\dfrac{1-11}{4}=-\\dfrac{5}{2}$ <br\/>V\u1eady $u=3;v=-\\dfrac{5}{2}$ ho\u1eb7c $u=-\\dfrac{5}{2};v=3$ hay hai s\u1ed1 c\u1ea7n t\u00ecm l\u00e0 $3$ v\u00e0 $-2,5$<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $3$ v\u00e0 $-2,5$<\/span><\/span>"}]}],"id_ques":877},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"select":["A. $\\dfrac{5}{3}$","B. $\\dfrac{1}{3}$","C. $\\dfrac{1}{4}$"],"ques":"<span class='basic_left'>Cho ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}+5x-3=0$. G\u1ecdi ${{x}_{1}},{{x}_{2}}$ l\u00e0 nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh. <br\/>Kh\u00f4ng gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh, h\u00e3y t\u00ednh gi\u00e1 tr\u1ecb c\u1ee7a bi\u1ec3u th\u1ee9c $A=\\dfrac{1}{{{x}_{1}}}+\\dfrac{1}{{{x}_{2}}}$<br\/><b> \u0110\u00e1p s\u1ed1: <\/b>$A=$?<br\/>(\u0110i\u1ec1n \u0111\u00e1p \u00e1n d\u01b0\u1edbi d\u1ea1ng ph\u00e2n s\u1ed1 t\u1ed1i gi\u1ea3n)<\/span>","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>B\u01b0\u1edbc 1: \u00c1p d\u1ee5ng h\u1ec7 th\u1ee9c Vi-\u00e9t \u0111\u1ec3 t\u00ednh t\u1ed5ng $S$ v\u00e0 t\u00edch $P$ c\u1ee7a hai nghi\u1ec7m.<br\/>B\u01b0\u1edbc 2: Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c $A$ v\u1ec1 bi\u1ec3u th\u1ee9c ch\u1ec9 ch\u1ee9a $S$ v\u00e0 $P$<br\/>B\u01b0\u1edbc 3: Thay gi\u00e1 tr\u1ecb c\u1ee7a $S$ v\u00e0 $P$ \u1edf b\u01b0\u1edbc 1 v\u00e0o $A$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span> <br\/>Ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}+5x-3=0$ c\u00f3 $ac=-3<0$ n\u00ean ph\u01b0\u01a1ng tr\u00ecnh lu\u00f4n c\u00f3 hai nghi\u1ec7m.<br\/>Theo h\u1ec7 th\u1ee9c Vi \u2013 \u00e9t, ta c\u00f3 $\\left\\{ \\begin{align} & {{x}_{1}}+{{x}_{2}}=-5 \\\\ & {{x}_{1}}.{{x}_{2}}=-3 \\\\ \\end{align} \\right.$ <br\/>$A=\\dfrac{1}{{{x}_{1}}}+\\dfrac{1}{{{x}_{2}}}=\\dfrac{{{x}_{1}}+{{x}_{2}}}{{{x}_{1}}{{x}_{2}}}=\\dfrac{-5}{-3}=\\dfrac{5}{3}$<\/span>"}]}],"id_ques":878},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho hai c\u00e2u","temp":"fill_the_blank","correct":[[["31"]]],"list":[{"point":5,"width":50,"type_input":"","ques":"<span class='basic_left'>Cho ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}+5x-3=0$. G\u1ecdi ${{x}_{1}},{{x}_{2}}$ l\u00e0 nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh. <br\/><b>C\u00e2u 2: <\/b>Kh\u00f4ng gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh, h\u00e3y t\u00ednh gi\u00e1 tr\u1ecb c\u1ee7a bi\u1ec3u th\u1ee9c $B=x_{1}^{2}+x_{2}^{2}$ <br\/><b> \u0110\u00e1p s\u1ed1: <\/b>$B=$_input_<\/span>","hint":"","explain":"<span class='basic_left'>Ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}+5x-3=0$ c\u00f3 $ac=-3<0$ n\u00ean ph\u01b0\u01a1ng tr\u00ecnh lu\u00f4n c\u00f3 hai nghi\u1ec7m.<br\/>Theo h\u1ec7 th\u1ee9c Vi \u2013 \u00e9t, ta c\u00f3 $\\left\\{ \\begin{align} & {{x}_{1}}+{{x}_{2}}=-5 \\\\ & {{x}_{1}}.{{x}_{2}}=-3 \\\\ \\end{align} \\right.$<br\/>$\\begin{align} & B=x_{1}^{2}+x_{2}^{2} \\\\ & \\,\\,\\,\\,\\,=\\left( x_{1}^{2}+2{{x}_{1}}{{x}_{2}}+x_{2}^{2} \\right)-2{{x}_{1}}{{x}_{2}} \\\\ & \\,\\,\\,\\,\\,={{\\left( {{x}_{2}}+{{x}_{2}} \\right)}^{2}}-2{{x}_{1}}{{x}_{2}} \\\\ & \\,\\,\\,\\,\\,={{\\left( -5 \\right)}^{2}}-2.\\left( -3 \\right) \\\\ & \\,\\,\\,\\,\\,=25+6=31 \\\\ \\end{align}$<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $31.$<\/span><br\/><span class='basic_green'>Nh\u1eadn x\u00e9t:<\/span><br\/>Bi\u1ec3u th\u1ee9c $A$ v\u00e0 $B$ nh\u01b0 tr\u00ean l\u00e0 c\u00e1c bi\u1ec3u th\u1ee9c \u0111\u1ed1i x\u1ee9ng gi\u1eefa $x_1$ v\u00e0 $x_2$. <br\/>Ngo\u00e0i ra, c\u00e1c em c\u00f2n g\u1eb7p nhi\u1ec1u bi\u1ec3u th\u1ee9c \u0111\u1ed1i x\u1ee9ng kh\u00e1c nh\u01b0:<br\/>$x_{1}^{3}+x_{2}^{3}$ ; $\\dfrac{{{x}_{1}}}{{{x}_{2}}}+\\dfrac{{{x}_{2}}}{{{x}_{1}}};\\dfrac{x_{1}^{2}}{x_{2}^{{}}}+\\dfrac{x_{2}^{2}}{{{x}_{1}}};...$ <\/span>"}]}],"id_ques":879},{"time":24,"part":[{"time":3,"title":"Nh\u1ea9m nghi\u1ec7m ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai 1 \u1ea9n","title_trans":"N\u1ed1i ph\u01b0\u01a1ng tr\u00ecnh \u1edf c\u1ed9t b\u00ean tr\u00e1i v\u1edbi nghi\u1ec7m \u1edf c\u1ed9t b\u00ean ph\u1ea3i \u0111\u1ec3 \u0111\u01b0\u1ee3c \u0111\u00e1p \u00e1n \u0111\u00fang","audio":"","temp":"matching","correct":[["3","2","4","1"]],"list":[{"point":5,"image":"img\/1.png","left":["Ph\u01b0\u01a1ng tr\u00ecnh $3{{x}^{2}}-4x+1=0$ c\u00f3 hai nghi\u1ec7m l\u00e0 ","Ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}+3x-4=0$ c\u00f3 hai nghi\u1ec7m l\u00e0 ","Ph\u01b0\u01a1ng tr\u00ecnh $2012x+2000x-12=0$ c\u00f3 hai nghi\u1ec7m l\u00e0 ","Ph\u01b0\u01a1ng tr\u00ecnh . ${{x}^{2}}+2013x+2012=0$ c\u00f3 hai nghi\u1ec7m l\u00e0 "],"right":["a. $ {{x}_{1}}=-1;{{x}_{2}}=-2012$ ","b. ${{x}_{1}}=1;{{x}_{2}}=-4$","c. ${{x}_{1}}=1;{{x}_{2}}=\\dfrac{1}{3}$","d. ${{x}_{1}}=-1;{{x}_{2}}=\\dfrac{3}{503}$ "],"top":80,"hint":"Ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai $ax^2+bx+c=0, a \\ne 0$<br\/>N\u1ebfu $a+b+c=0$ th\u00ec ${{x}_{1}}=1;{{x}_{2}}=\\dfrac{c}{a}$<br\/>N\u1ebfu $a-b+c=0$ th\u00ec ${{x}_{1}}=-1;{{x}_{2}}=-\\dfrac{c}{a}$","explain":"<span class='basic_left'>Ph\u01b0\u01a1ng tr\u00ecnh $3{{x}^{2}}-4x+1=0$ c\u00f3 $a+b+c=3-4+1=0$ n\u00ean ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m l\u00e0 ${{x}_{1}}=1;{{x}_{2}}=\\dfrac{1}{3}$<br\/>Ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}+3x-4=0$ c\u00f3 $a+b+c=1+3-4=0$ n\u00ean ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m l\u00e0 ${{x}_{1}}=1;{{x}_{2}}=-4$ <br\/>Ph\u01b0\u01a1ng tr\u00ecnh $2012x+2000x-12=0$ c\u00f3 $a-b+c=2012-2000-12=0$ n\u00ean ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m l\u00e0 <br\/>${{x}_{1}}=-1;{{x}_{2}}=\\dfrac{12}{2012}=\\dfrac{3}{503}$<br\/>Ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}+2013x+2012=0$ c\u00f3 $a-b+c=1-2013+2012=0$ n\u00ean ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m l\u00e0<br\/> ${{x}_{1}}=-1;{{x}_{2}}=-2012$ <br\/><span class='basic_pink'>V\u1eady 1 n\u1ed1i v\u1edbi c, 2 n\u1ed1i v\u1edbi b, 3 n\u1ed1i v\u1edbi d v\u00e0 4 n\u1ed1i v\u1edbi a.<\/span><br\/><span class='basic_green'>Nh\u1eadn x\u00e9t:<\/span><br\/>+ \u0110\u1ec3 s\u1eed d\u1ee5ng \u0111\u01b0\u1ee3c ph\u01b0\u01a1ng ph\u00e1p nh\u1ea9m nghi\u1ec7m th\u00ec ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00e3 cho ph\u1ea3i l\u00e0 ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai.<br\/>+ Khi t\u00ednh nh\u1ea9m nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng b\u1eadc hai, tr\u01b0\u1edbc h\u1ebft ta th\u01b0\u1eddng x\u00e9t xem ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00f3 c\u00f3 nghi\u1ec7m l\u00e0 $1$ hay $-1$ hay kh\u00f4ng. Trong th\u1ef1c h\u00e0nh, ta th\u01b0\u1eddng t\u00ednh $a+c$ tr\u01b0\u1edbc. N\u1ebfu $a+c=b$ th\u00ec $-1$ l\u00e0 m\u1ed9t nghi\u1ec7m; $a+c=-b$ th\u00ec $1$ l\u00e0 m\u1ed9t nghi\u1ec7m.<\/span>"}]}],"id_ques":880},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":"Ph\u01b0\u01a1ng tr\u00ecnh $-5\\sqrt{2}{{x}^{2}}+\\sqrt{2}\\left( \\sqrt{2}+5 \\right)x-2=0$ c\u00f3 m\u1ed9t nghi\u1ec7m l\u00e0 $-\\dfrac{\\sqrt{2}}{5},$ <b>\u0111\u00fang<\/b> hay <b>sai<\/b>?","select":["A. \u0110\u00fang ","B. Sai"],"hint":"","explain":"<span class='basic_left'>Ph\u01b0\u01a1ng tr\u00ecnh $-5\\sqrt{2}{{x}^{2}}+\\sqrt{2}\\left( \\sqrt{2}+5 \\right)x-2=0$ c\u00f3 $a+b+c=-5\\sqrt{2}+\\sqrt{2}\\left( \\sqrt{2}+5 \\right)-2=0$<br\/>Suy ra ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00e3 cho c\u00f3 nghi\u1ec7m l\u00e0 ${{x}_{1}}=1;{{x}_{2}}=\\dfrac{2}{5\\sqrt{2}}=\\dfrac{\\sqrt{2}}{5}$ <br\/>Suy ra $x=-\\dfrac{\\sqrt{2}}{5}$ kh\u00f4ng l\u00e0 nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh<br\/><span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n ch\u1ecdn l\u00e0 B<\/span <\/span>","column":2}]}],"id_ques":881},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank_random","correct":[[["3"],["5"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","ques":"T\u00ednh nh\u1ea9m nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}-\\left( \\sqrt{3}+\\sqrt{5} \\right)x+\\sqrt{15}=0$ <br\/><b>\u0110\u00e1p s\u1ed1: <\/b> $ x_1=\\sqrt{\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}}$ v\u00e0 $x_2=\\sqrt{\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}}$","hint":"Nh\u1ea9m: ${{x}_{1}}+{{x}_{2}}=m+n;{{x}_{1}}.{{x}_{2}}=mn$ th\u00ec ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 nghi\u1ec7m ${{x}_{1}}=m;{{x}_{2}}=n$ ","explain":"Ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 ${{x}_{1}}+{{x}_{2}}=\\sqrt{3}+\\sqrt{5};{{x}_{1}}.{{x}_{2}}=\\sqrt{15}=\\sqrt{3}.\\sqrt{5}$ <br\/>Suy ra ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 nghi\u1ec7m l\u00e0 ${{x}_{1}}=\\sqrt{3};{{x}_{2}}=\\sqrt{5}$<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $3$ v\u00e0 $5.$<\/span>"}]}],"id_ques":882},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank_random","correct":[[["-7"],["2"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","ques":"Bi\u1ebft ph\u01b0\u01a1ng tr\u00ecnh $x^2+mx-35=0$ c\u00f3 1 nghi\u1ec7m ${{x}_{1}}=5$. T\u00ecm nghi\u1ec7m ${{x}_{2}}$ c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh r\u1ed3i t\u1eeb \u0111\u00f3 t\u00ecm $m$<br\/><b>\u0110\u00e1p s\u1ed1: <\/b> $x_2=$_input_; $m=$_input_","hint":"\u00c1p d\u1ee5ng h\u1ec7 th\u1ee9c Vi-\u00e9t \u0111\u1ec3 t\u00ecm nghi\u1ec7m $x_2$ c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh. ","explain":"<span class='basic_left'>Ph\u01b0\u01a1ng tr\u00ecnh $x^2+mx-35=0$ c\u00f3 hai nghi\u1ec7m $x_1;x_2$ n\u00ean theo h\u1ec7 th\u1ee9c Vi-\u00e9t, ta c\u00f3:<br\/> ${{x}_{1}}.{{x}_{2}}=-35\\Leftrightarrow {{x}_{2}}=-35:{{x}_{1}}=-35:5=-7$ <br\/>Khi \u0111\u00f3 ${{x}_{1}}+{{x}_{2}}=-m\\Leftrightarrow 5+\\left( -7 \\right)=-m\\Leftrightarrow m=2$ <br\/>V\u1eady ${{x}_{2}}=-7;m=2$ <br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $-7$ v\u00e0 $2$<\/span>"}]}],"id_ques":883},{"time":24,"part":[{"time":3,"title":"X\u00e9t d\u1ea5u c\u00e1c nghi\u1ec7m c\u1ee7a c\u00e1c ph\u01b0\u01a1ng tr\u00ecnh","title_trans":"N\u1ed1i ph\u01b0\u01a1ng tr\u00ecnh \u1edf c\u1ed9t b\u00ean tr\u00e1i v\u1edbi k\u1ebft lu\u1eadn \u1edf c\u1ed9t b\u00ean ph\u1ea3i \u0111\u1ec3 \u0111\u01b0\u1ee3c \u0111\u00e1p \u00e1n \u0111\u00fang","audio":"","temp":"matching","correct":[["3","1","2"]],"list":[{"point":5,"image":"img\/1.png","left":[" $2{{x}^{2}}-7x+3=0$ ","$5{{x}^{2}}+3x+1=0$ ","$3x^2+7x-1=0$"],"right":["a. ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m \u00e2m ph\u00e2n bi\u1ec7t ","b. ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m tr\u00e1i d\u1ea5u","c. ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m d\u01b0\u01a1ng ph\u00e2n bi\u1ec7t"],"top":80,"hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn: <\/span><br\/>Cho ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai $ax^2+bx+c=0$ c\u00f3 nghi\u1ec7m ${{x}_{1}};{{x}_{2}}$.<br\/> \u0110\u1eb7t $S={{x}_{1}}+{{x}_{2}}=-\\dfrac{b}{a};P={{x}_{1}}{{x}_{2}}=\\dfrac{c}{a}$ <br\/>Ta c\u00f3 \u0111i\u1ec1u ki\u1ec7n \u0111\u1ec3 m\u1ed9t ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai:<br\/>+ C\u00f3 hai nghi\u1ec7m tr\u00e1i d\u1ea5u l\u00e0: $P<0$ hay $ac<0$<br\/>+ C\u00f3 hai nghi\u1ec7m c\u00f9ng d\u1ea5u l\u00e0 $\\left\\{ \\begin{align} & \\Delta \\ge 0 \\\\ & P>0 \\\\ \\end{align} \\right.$ <br\/>+ C\u00f3 hai nghi\u1ec7m d\u01b0\u01a1ng l\u00e0 $\\left\\{ \\begin{align} & \\Delta \\ge 0 \\\\ & P>0 \\\\ & S>0 \\\\ \\end{align} \\right.$<br\/>+ C\u00f3 hai nghi\u1ec7m \u00e2m l\u00e0 $\\left\\{ \\begin{align} & \\Delta \\ge 0 \\\\ & P>0 \\\\ & S<0 \\\\ \\end{align} \\right.$<br\/>N\u1ebfu $\\Delta >0$ th\u00ec ta th\u00eam \u201cph\u00e2n bi\u1ec7t\u201d.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/>Ph\u01b0\u01a1ng tr\u00ecnh $2{{x}^{2}}-7x+3=0$ c\u00f3 $\\Delta =25>0;S=\\dfrac{7}{3}>0;P=\\dfrac{3}{2}>0.$ <br\/> Suy ra ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m d\u01b0\u01a1ng ph\u00e2n bi\u1ec7t<br\/>Ph\u01b0\u01a1ng tr\u00ecnh $5{{x}^{2}}+6x+1=0$c\u00f3 $\\Delta' =4>0;S=-\\dfrac{6}{5}<0;P=\\dfrac{1}{5}>0.$ <br\/> Suy ra ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m \u00e2m ph\u00e2n bi\u1ec7t<br\/>Ph\u01b0\u01a1ng tr\u00ecnh $3x^2+7x-1=0$ c\u00f3 $ac=-3<0$ <br\/> Suy ra ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m tr\u00e1i d\u1ea5u<br\/><span class='basic_pink'>V\u1eady 1 n\u1ed1i v\u1edbi c, 2 n\u1ed1i v\u1edbi a v\u00e0 3 n\u1ed1i v\u1edbi b<\/span><\/span>"}]}],"id_ques":884},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":"T\u00ecm $m$ \u0111\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}-2mx+{{\\left( m-1 \\right)}^{2}}=0$ c\u00f3 hai nghi\u1ec7m d\u01b0\u01a1ng","select":["A. $m > \\dfrac{1}{2}$ v\u00e0 $m\\ne 0$ ","B. $m \\ge \\dfrac{1}{2}$ v\u00e0 $m\\ne 1$","C. $m \\ge -\\dfrac{1}{2}$ v\u00e0 $m\\ne 1$","D. $m \\ne 1$ v\u00e0 $m\\ne 0$"],"hint":"Ph\u01b0\u01a1ng tr\u00ecnh b\u1eadc hai c\u00f3 hai nghi\u1ec7m d\u01b0\u01a1ng $\\Leftrightarrow \\Delta '\\ge 0; P>0$ v\u00e0 $S>0$","explain":"<span class='basic_left'>Ta c\u00f3 <br\/>$\\begin{aligned} & \\Delta '={{m}^{2}}-{{\\left( m-1 \\right)}^{2}} \\\\ & \\,\\,\\,\\,\\,\\,={{m}^{2}}-\\left( {{m}^{2}}-2m+1 \\right) \\\\ & \\,\\,\\,\\,\\,\\,=2m-1 \\\\ \\end{aligned}$<br\/> Ta c\u00f3 $S=2m; P=(m-1)^2$<br\/>\u0110\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m d\u01b0\u01a1ng th\u00ec $\\left\\{ \\begin{aligned} & \\Delta ' \\ge 0 \\\\ & P>0 \\\\ & S>0 \\\\ \\end{aligned} \\right.$<br\/> $\\Leftrightarrow \\left\\{ \\begin{aligned} & 2m-1\\ge 0 \\\\ & {{\\left( m-1 \\right)}^{2}}>0 \\\\ & 2m>0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & m\\ge \\dfrac{1}{2} \\\\ & m\\ne 1 \\\\ & m > 0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & m\\ge \\dfrac{1}{2} \\\\ & m\\ne 1 \\\\ \\end{aligned} \\right.$<br\/> V\u1eady $m\\ge \\dfrac{1}{2}$ v\u00e0 $m\\ne 1$ th\u00ec ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00e3 cho c\u00f3 hai nghi\u1ec7m d\u01b0\u01a1ng.<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n ch\u1ecdn l\u00e0 B <\/span><\/span>","column":2}]}],"id_ques":885},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":"V\u1edbi m\u1ecdi gi\u00e1 tr\u1ecb $m$ th\u00ec ph\u01b0\u01a1ng tr\u00ecnh $2{{x}^{2}}-2\\left( m+1 \\right)x+m=0$ lu\u00f4n c\u00f3 hai nghi\u1ec7m \u00e2m ph\u00e2n bi\u1ec7t, <b>\u0111\u00fang<\/b> hay <b> sai <\/b>?","select":["A. \u0110\u00fang ","B. Sai"],"hint":"Ki\u1ec3m tra \u0111i\u1ec1u ki\u1ec7n c\u1ee7a $m$ \u0111\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m \u00e2m ph\u00e2n bi\u1ec7t: $\\Delta' > 0; P>0$ v\u00e0 $S<0$ ","explain":"<span class='basic_left'>Ta c\u00f3 <br\/>$\\begin{aligned} & \\Delta '={{\\left( m+1 \\right)}^{2}}-2m \\\\ & \\,\\,\\,\\,\\,\\,={{m}^{2}}+2m+1-2m \\\\ & \\,\\,\\,\\,\\,\\,={{m}^{2}}+1>0 \\\\ \\end{aligned}$<br\/> Suy ra ph\u01b0\u01a1ng tr\u00ecnh lu\u00f4n c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t<br\/>Ta c\u00f3 $S=m+1;$ $P=\\dfrac{m}{2}$<br\/> \u0110\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m \u00e2m ph\u00e2n bi\u1ec7t th\u00ec $\\left\\{ \\begin{aligned} & P>0 \\\\ & S<0 \\\\ \\end{aligned} \\right.$<br\/> $\\Leftrightarrow \\left\\{ \\begin{aligned} & \\dfrac{m}{2}>0 \\\\ & m+1<0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & m>0 \\\\ & m<-1 \\\\ \\end{aligned} \\right.$ (kh\u00f4ng t\u1ed3n t\u1ea1i)<br\/>V\u1eady kh\u00f4ng c\u00f3 gi\u00e1 tr\u1ecb n\u00e0o c\u1ee7a $m$ \u0111\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh \u0111\u00e3 cho c\u00f3 hai nghi\u1ec7m \u00e2m ph\u00e2n bi\u1ec7t.<br\/>V\u1eady kh\u1eb3ng \u0111\u1ecbnh b\u00e0i to\u00e1n l\u00e0 sai.<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n ch\u1ecdn l\u00e0 B <\/span><\/span>","column":2}]}],"id_ques":886},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["15"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","ques":"Cho ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}-8x+m=0.$ T\u00ecm $m$ \u0111\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ${{x}_{1}};{{x}_{2}}$ th\u1ecfa m\u00e3n ${{x}_{1}}-{{x}_{2}}=2$ <br\/><b>\u0110\u00e1p s\u1ed1:<\/b> $m=$_input_ ","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>B\u01b0\u1edbc 1: T\u00ecm \u0111i\u1ec1u ki\u1ec7n \u0111\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 nghi\u1ec7m<br\/>B\u01b0\u1edbc 2: T\u1eeb h\u1ec7 th\u1ee9c Vi-\u00e9t v\u00e0 h\u1ec7 th\u1ee9c \u0111\u00e3 cho, ta gi\u1ea3i h\u1ec7 \u0111\u1ed1i v\u1edbi nghi\u1ec7m $x_1;x_2$ r\u1ed3i thay v\u00e0o ph\u01b0\u01a1ng tr\u00ecnh c\u00f2n l\u1ea1i \u0111\u1ec3 t\u00ecm $m.$<br\/>B\u01b0\u1edbc 3: Ki\u1ec3m tra $m$ c\u00f3 th\u1ecfa m\u00e3n \u0111i\u1ec1u ki\u1ec7n kh\u00f4ng r\u1ed3i k\u1ebft lu\u1eadn.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}-8x+m=0$ c\u00f3 $\\Delta '=16-m$<br\/> Ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m $\\Leftrightarrow \\Delta '\\ge 0\\Leftrightarrow 16-m\\ge 0\\Leftrightarrow m\\le 16$<br\/> \u00c1p d\u1ee5ng h\u1ec7 th\u1ee9c Viet, ta c\u00f3: $\\left\\{ \\begin{aligned} & {{x}_{1}}+{{x}_{2}}=8\\,\\,\\,\\,\\left( 1 \\right) \\\\ & {{x}_{1}}.{{x}_{2}}=m\\,\\,\\,\\,\\,\\,\\left( 2 \\right) \\\\ \\end{aligned} \\right.$<br\/>Theo gi\u1ea3 thi\u1ebft ${{x}_{1}}-{{x}_{2}}=2$ . K\u1ebft h\u1ee3p v\u1edbi (1), ta c\u00f3 h\u1ec7 ph\u01b0\u01a1ng tr\u00ecnh:<br\/> $\\left\\{ \\begin{aligned} & {{x}_{1}}+{{x}_{2}}=8 \\\\ & {{x}_{1}}-{{x}_{2}}=2 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & 2{{x}_{1}}=10 \\\\ & {{x}_{1}}-{{x}_{2}}=2 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & {{x}_{1}}=5 \\\\ & {{x}_{2}}=3 \\\\ \\end{aligned} \\right.$<br\/> Thay ${{x}_{1}}=5;{{x}_{2}}=3$ v\u00e0o (2), ta c\u00f3: $5.3=m$ $\\Leftrightarrow m=15$ (th\u1ecfa m\u00e3n)<br\/>V\u1eady $m=15$ th\u00ec ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ${{x}_{1}};{{x}_{2}}$ th\u1ecfa m\u00e3n ${{x}_{1}}-{{x}_{2}}=2$<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $15.$<\/span>"}]}],"id_ques":887},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["12"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","ques":"Cho ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}-8x+m=0.$ T\u00ecm $m$ \u0111\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ${{x}_{1}};{{x}_{2}}$ th\u1ecfa m\u00e3n ${{x}_{1}}=3{{x}_{2}}$ <br\/><b>\u0110\u00e1p s\u1ed1:<\/b> $m=$_input_ ","hint":"","explain":"<span class='basic_left'>Ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}-8x+m=0$ c\u00f3 $\\Delta '=16-m$<br\/> Ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m $\\Leftrightarrow \\Delta '\\ge 0\\Leftrightarrow 16-m\\ge 0\\Leftrightarrow m\\le 16$<br\/> \u00c1p d\u1ee5ng h\u1ec7 th\u1ee9c Viet, ta c\u00f3: $\\left\\{ \\begin{aligned} & {{x}_{1}}+{{x}_{2}}=8\\,\\,\\,\\,\\left( 1 \\right) \\\\ & {{x}_{1}}.{{x}_{2}}=m\\,\\,\\,\\,\\,\\,\\left( 2 \\right) \\\\ \\end{aligned} \\right.$<br\/> Thay ${{x}_{1}}=3{{x}_{2}}$ v\u00e0o (1), ta c\u00f3:<br\/> $3{{x}_{2}}+{{x}_{2}}=8\\Leftrightarrow 4{{x}_{2}}=8\\Leftrightarrow {{x}_{2}}=2$ <br\/>Suy ra ${{x}_{1}}=3.2=6$ <br\/>Thay ${{x}_{1}}=6;{{x}_{2}}=2$ v\u00e0o (2), ta c\u00f3: $6.2=m$$\\Leftrightarrow m=12$ (th\u1ecfa m\u00e3n)<br\/>V\u1eady $m =12$ th\u00ec ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ${{x}_{1}};{{x}_{2}}$ th\u1ecfa m\u00e3n ${{x}_{1}}=3{{x}_{2}}$<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $12.$<\/span>"}]}],"id_ques":888},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":" X\u00e1c \u0111\u1ecbnh $m$ \u0111\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh $x^2+2x+m=0$ c\u00f3 hai nghi\u1ec7m $x_1;x_2$ ph\u00e2n bi\u1ec7t th\u1ecfa m\u00e3n $x_{1}^{2}+x_{2}^{2}=1$ ","select":["A. $m=\\dfrac{3}{2}$","B. $m=-\\dfrac{3}{2}$ ","C. $m=\\dfrac{1}{2}$ ","D. Kh\u00f4ng c\u00f3 gi\u00e1 tr\u1ecb n\u00e0o c\u1ee7a $m$"],"hint":"","explain":"<span class='basic_left'>Ta c\u00f3: $\\Delta '=1-m$ <br\/>Ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 hai nghi\u1ec7m ph\u00e2n bi\u1ec7t $\\Leftrightarrow \\Delta '>0 \\Leftrightarrow 1-m>0\\Leftrightarrow m<1$ (*)<br\/>\u00c1p d\u1ee5ng h\u1ec7 th\u1ee9c Vi-\u00e9t, ta c\u00f3: $\\left\\{ \\begin{aligned} & {{x}_{1}}+{{x}_{2}}=-2 \\\\ & {{x}_{1}}{{x}_{2}}=m \\\\ \\end{aligned} \\right.$ <br\/>Theo gi\u1ea3 thi\u1ebft: $x_{1}^{2}+x_{2}^{2}=1$<br\/>$\\begin{aligned} & \\Leftrightarrow {{\\left( {{x}_{1}}+{{x}_{2}} \\right)}^{2}}-2{{x}_{1}}{{x}_{2}}=1 \\\\ & \\Leftrightarrow 4-2m=1 \\\\ & \\Leftrightarrow 2m=3 \\\\ \\end{aligned}$<br\/>$\\Leftrightarrow m=\\dfrac{3}{2}$ (kh\u00f4ng th\u1ecfa m\u00e3n (*))<br\/>V\u1eady kh\u00f4ng c\u00f3 gi\u00e1 tr\u1ecb n\u00e0o c\u1ee7a $m$ th\u1ecfa m\u00e3n y\u00eau c\u1ea7u c\u1ee7a \u0111\u1ec1 b\u00e0i.<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 D<\/span><\/span>","column":4}]}],"id_ques":889},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":" Ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}-mx+2m=0$ c\u00f3 m\u1ed9t nghi\u1ec7m l\u00e0 $-1.$ Nghi\u1ec7m c\u00f2n l\u1ea1i l\u00e0 ","select":["A. $-1$","B. $6$ ","C. $\\dfrac{2}{3}$ ","D. $-\\dfrac{2}{3}$"],"hint":"T\u00ecm $m$ tr\u01b0\u1edbc, sau \u0111\u00f3 \u00e1p d\u1ee5ng h\u1ec7 th\u1ee9c Vi-\u00e9t \u0111\u1ec3 t\u00ecm nghi\u1ec7m c\u00f2n l\u1ea1i.","explain":"<span class='basic_left'>Ph\u01b0\u01a1ng tr\u00ecnh ${{x}^{2}}-mx+2m=0$ c\u00f3 m\u1ed9t nghi\u1ec7m l\u00e0 $-1$ n\u00ean $a-b+c=0$$\\Leftrightarrow 1+m+2m=0\\Leftrightarrow m=-\\dfrac{1}{3}$ <br\/>\u00c1p d\u1ee5ng h\u1ec7 th\u1ee9c Vi \u2013\u00e9t, ta c\u00f3: ${{x}_{1}}.{{x}_{2}}=2m$ <br\/>Suy ra <br\/>$\\begin{align} & \\left( -1 \\right){{x}_{2}}=2.\\left( -\\dfrac{1}{3} \\right)\\Leftrightarrow {{x}_{2}}=\\dfrac{2}{3} \\\\ & \\\\ \\end{align}$ <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 C<\/span><\/span>","column":4}]}],"id_ques":890}],"lesson":{"save":0,"level":1}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý