đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["-8"],["3"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai9/lv2/img\/9.jpg' \/><\/center>Cho h\u00e0m s\u1ed1 $y=x^2-6x+1$. T\u00ecm gi\u00e1 tr\u1ecb nh\u1ecf nh\u1ea5t c\u1ee7a h\u00e0m s\u1ed1 \u0111\u00f3.<br\/>\u0110\u00e1p \u00e1n: $y_{min}=$ _input_ khi $x =$ _input_","hint":"\u0110\u01b0a h\u00e0m s\u1ed1 \u0111\u00e3 cho v\u1ec1 d\u1ea1ng $y = a + [f(x)]^2$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: D\u1ef1a v\u00e0o h\u1eb1ng \u0111\u1eb3ng th\u1ee9c ${{A}^{2}}\\pm 2AB+{{B}^{2}}={{\\left( A\\pm B \\right)}^{2}}$ \u0111\u1ec3 \u0111\u01b0a bi\u1ec3u th\u1ee9c v\u1ec1 d\u1ea1ng $T=a+{{\\left[ f\\left( x \\right) \\right]}^{2}}$<br\/>B\u01b0\u1edbc 2: V\u00ec $f{{\\left[ \\left( x \\right) \\right]}^{2}}\\ge 0\\,\\,\\forall \\,x$ n\u00ean $T\\ge a$ . Suy ra ${{T}_{\\min }}=a\\Leftrightarrow f\\left( x \\right)=0$. <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> Ta c\u00f3:<br\/>$\\begin{align}\\,\\,y&={{x}^{2}}-6x+1\\\\&=(x^2-6x+9)-9+1\\\\&={{\\left( x-3 \\right)}^{2}}-8\\ge -8\\\\ \\end{align}$ <br\/>${{y}_{\\min }}=-8\\Leftrightarrow {{\\left( x-3 \\right)}^{2}}=0\\Leftrightarrow x=3$ <br\/>V\u1eady ${{y}_{\\min }}=-8\\Leftrightarrow x=3$<br\/><span class='basic_pink'>Do \u0111\u00f3 s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $-8$ v\u00e0 $3$.<\/span>"}]}],"id_ques":21},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":"Cho h\u00e0m s\u1ed1 $y=\\dfrac{{{x}^{2}}-3x+2}{\\sqrt{x-2}}$ . T\u00ecm $x$ \u0111\u1ec3 $y=0$. ","select":["A. $x= 1$","B. $x = 2$","C. $x= 1$ ho\u1eb7c $x = 2$","D. $x\\in \\varnothing$"],"hint":"$\\dfrac{a}{b}=0\\Leftrightarrow a=0$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>B\u01b0\u1edbc 1: T\u00ecm \u0111i\u1ec1u ki\u1ec7n c\u1ee7a $x$ \u0111\u1ec3 h\u00e0m s\u1ed1 c\u00f3 ngh\u0129a.<br\/>B\u01b0\u1edbc 2: Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh. <br\/>B\u01b0\u1edbc 3: K\u1ebft h\u1ee3p v\u1edbi \u0111i\u1ec1u ki\u1ec7n \u0111\u1ec3 t\u00ecm ra nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh. <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>\u0110i\u1ec1u ki\u1ec7n x\u00e1c \u0111\u1ecbnh c\u1ee7a h\u00e0m s\u1ed1 l\u00e0 $x \u2013 2 > 0 \\Leftrightarrow x > 2$<br\/>$\\begin{aligned} y=0 & \\Leftrightarrow \\dfrac{{{x}^{2}}-3x+2}{\\sqrt{x-2}}=0 \\\\ & \\Leftrightarrow \\dfrac{{{x}^{2}}-2x-x+2}{\\sqrt{x-2}}=0 \\\\ & \\Rightarrow x^2-2x-x+2=0 \\\\ & \\Leftrightarrow x(x-2)-(x-2)=0 \\\\ & \\Leftrightarrow \\left( x-1 \\right)\\left( x-2 \\right)=0 \\\\ & \\Leftrightarrow \\left[ \\begin{aligned} & x-1=0 \\\\ & x-2=0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left[ \\begin{aligned} & x=1\\,\\,\\,\\,\\,(lo\u1ea1i) \\\\ & x=2\\,\\,\\,\\,\\,(lo\u1ea1i) \\\\ \\end{aligned} \\right. \\\\ \\end{aligned}$<br\/>Suy ra kh\u00f4ng c\u00f3 gi\u00e1 tr\u1ecb n\u00e0o c\u1ee7a $x$ \u0111\u1ec3 $y= 0$. <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n l\u00e0 D.<\/span><\/span>","column":2}]}],"id_ques":22},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":"T\u00ecm $m$ \u0111\u1ec3 h\u00e0m s\u1ed1 $y = (m^2-5 )x+2$ ngh\u1ecbch bi\u1ebfn tr\u00ean $\\mathbb{R}$","select":["A. $m > \\sqrt{5}$ ho\u1eb7c $m < -\\sqrt{5}$","B. $m > \\sqrt{5}$","C. $m < -\\sqrt{5}$","D. $-\\sqrt{5}\\,<\\,m \\,<\\,\\sqrt{5}$"],"hint":": Gi\u1ea3i b\u1ea5t ph\u01b0\u01a1ng tr\u00ecnh $a < 0$. ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>B\u01b0\u1edbc 1: H\u00e0m s\u1ed1 b\u1eadc nh\u1ea5t $ y= ax +b\\, (a\\ne 0)$ ngh\u1ecbch bi\u1ebfn khi $a < 0$<br\/>B\u01b0\u1edbc 2: \u00c1p d\u1ee5ng h\u1eb1ng \u0111\u1eb3ng th\u1ee9c $a^2 -b^2= (a-b)(a+b)$ <br\/>B\u01b0\u1edbc 3: Chia tr\u01b0\u1eddng h\u1ee3p gi\u1ea3i b\u1ea5t ph\u01b0\u01a1ng tr\u00ecnh. <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>H\u00e0m s\u1ed1 $y = (m^2-5 )x+2$ ngh\u1ecbch bi\u1ebfn tr\u00ean $\\mathbb{R}$ <br\/> $\\Leftrightarrow {{m}^{2}-5}<0\\Leftrightarrow \\left( m-\\sqrt{5} \\right)\\left( m+\\sqrt{5} \\right) < 0$ <br\/>Tr\u01b0\u1eddng h\u1ee3p 1: $\\left\\{ \\begin{aligned} & m-\\sqrt{5}>0 \\\\ & m+\\sqrt{5}<0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & m>\\sqrt{5} \\\\ & m< -\\sqrt{5} \\\\ \\end{aligned} \\right.\\Leftrightarrow \\,$ (lo\u1ea1i) <br\/>Tr\u01b0\u1eddng h\u1ee3p 2: $\\left\\{ \\begin{aligned} & m-\\sqrt{5} < 0 \\\\ & m+\\sqrt{5}> 0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & m < \\sqrt{5} \\\\ & m >- \\sqrt{5}\\\\ \\end{aligned} \\right.\\,$$\\Leftrightarrow -\\sqrt{5} < m <\\sqrt{5} $ <br\/>Do \u0111\u00f3 v\u1edbi $-\\sqrt{5}\\,<\\,m \\,<\\,\\sqrt{5}$ th\u00ec h\u00e0m s\u1ed1 \u0111\u1ed3ng bi\u1ebfn tr\u00ean $\\mathbb{R}$. <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n l\u00e0 D.<\/span><\/span>","column":2}]}],"id_ques":23},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["5"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai9/lv2/img\/4.jpg' \/><\/center> Tr\u00ean m\u1eb7t ph\u1eb3ng t\u1ecda \u0111\u1ed9 $Oxy$ cho \u0111i\u1ec3m $A (3; 4)$. \u0110\u1ed9 d\u00e0i \u0111o\u1ea1n $OA$ l\u00e0 _input_","hint":"H\u1ea1 $AH \\bot Ox$ t\u1ea1i $H$. <br\/>\u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Py - ta - go v\u00e0o tam gi\u00e1c vu\u00f4ng $OAH$. ","explain":"<span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai9/lv2/img\/D921_TB5.png' \/><\/center><br\/>H\u1ea1 $AH \\bot Ox$ t\u1ea1i $H$ $\\Rightarrow H (3; 0)$.<br\/>Theo h\u00ecnh v\u1ebd ta c\u00f3 $AH= 4; OH =3$.<br\/>X\u00e9t $\\Delta AHO$ vu\u00f4ng t\u1ea1i $H$ c\u00f3:<br\/> $\\begin{align} AO^2&=AH^2+OH^2\\,\\,(\u0110\u1ecbnh\\,\\,l\u00fd\\,\\,Py - ta - go)\\\\&=16+9\\\\&=25 \\\\ \\Rightarrow&AO= 5\\\\ \\end{align}$ <br\/><span class='basic_pink'>Do \u0111\u00f3 s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $5$.<\/span>"}]}],"id_ques":24},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"fill_the_blank","correct":[[["3"],["-2"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<span class='basic_left'> Cho $A (-3; 2), B (1; 4)$. $ABCD$ l\u00e0 h\u00ecnh b\u00ecnh h\u00e0nh nh\u1eadn g\u1ed1c $O$ l\u00e0m t\u00e2m \u0111\u1ed1i x\u1ee9ng. <br\/><b>C\u00e2u 1:<\/b> T\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $C$ l\u00e0 (_input_; _input_) <\/span>","hint":"V\u1ebd h\u1ec7 tr\u1ee5c t\u1ecda \u0111\u1ed9, l\u1ea5y \u0111i\u1ec3m $A$ v\u00e0 $B$, l\u1ea5y \u0111i\u1ec3m $C$ \u0111\u1ed1i x\u1ee9ng v\u1edbi $A$ qua $O$.","explain":"<span class='basic_left'><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai9/lv2/img\/D921_TB3.png' \/><\/center><\/center><br\/>L\u1ea5y \u0111i\u1ec3m $A(-3; 2)$ v\u00e0 \u0111i\u1ec3m $B (1; 4)$ tr\u00ean h\u1ec7 tr\u1ee5c t\u1ecda \u0111\u1ed9 $Oxy$ nh\u01b0 h\u00ecnh v\u1ebd.<br\/>V\u00ec $ABCD$ l\u00e0 h\u00ecnh b\u00ecnh h\u00e0nh c\u00f3 t\u00e2m \u0111\u1ed1i x\u1ee9ng l\u00e0 $O(0;0)$ n\u00ean $C$ \u0111\u1ed1i x\u1ee9ng v\u1edbi $A$ qua $O$ c\u00f3 t\u1ecda \u0111\u1ed9 l\u00e0 $(3;-2)$<br\/><span class='basic_pink'>Do \u0111\u00f3 s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $3$ v\u00e0 $-2$.<\/span><br\/>C\u00e1ch 2: Ngo\u00e0i ra, ta c\u00f3 th\u1ec3 t\u00ecm t\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $C$ b\u1eb1ng c\u00e1ch \u00e1p d\u1ee5ng c\u00f4ng th\u1ee9c t\u1ecda \u0111\u1ed9 trung \u0111i\u1ec3m c\u1ee7a \u0111o\u1ea1n th\u1eb3ng.<br\/>V\u00ec $A$ \u0111\u1ed1i x\u1ee9ng v\u1edbi $C$ qua $O$, suy ra $O$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $AC$. <br\/>T\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $C$ l\u00e0 :<br\/>$\\left\\{ \\begin{aligned} & {{x}_{C}}=2{{x}_{O}}-{{x}_{A}} \\\\ & {{y}_{C}}=2{{y}_{O}}-{{y}_{A}} \\\\ \\end{aligned} \\right.\\,$$\\Leftrightarrow \\left\\{ \\begin{aligned} & {{x}_{C}}=2.0-\\left( -3 \\right) \\\\ & {{y}_{C}}=2.0-2 \\\\ \\end{aligned} \\right.\\,$$\\Leftrightarrow \\left\\{ \\begin{aligned} & {{x}_{C}}=3 \\\\ & {{y}_{C}}=-2 \\\\ \\end{aligned} \\right.$ <br\/>$\\Rightarrow C\\left( 3;-2 \\right)$ <br\/><span class='basic_green'>Ghi nh\u1edb:<\/span> $M$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $AB$. T\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $M$ \u0111\u01b0\u1ee3c cho b\u1edfi:<br\/>$ \\left\\{ \\begin{aligned} & 2{{x}_{M}}={{x}_{A}}+{{x}_{B}} \\\\ & 2{{y}_{M}}={{y}_{A}}+{{y}_{B}} \\\\ \\end{aligned} \\right.$ <\/span>"}]}],"id_ques":25},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"fill_the_blank","correct":[[["-1"],["-4"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<span class='basic_left'> Cho $A (-3; 2), B (1; 4)$. $ABCD$ l\u00e0 h\u00ecnh b\u00ecnh h\u00e0nh nh\u1eadn g\u1ed1c $O$ l\u00e0m t\u00e2m \u0111\u1ed1i x\u1ee9ng. <br\/><b>C\u00e2u 2:<\/b>T\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $D$ l\u00e0 (_input_; _input_) <\/span>","hint":"V\u1ebd h\u1ec7 tr\u1ee5c t\u1ecda \u0111\u1ed9, l\u1ea5y \u0111i\u1ec3m $A$ v\u00e0 $B$, l\u1ea5y \u0111i\u1ec3m $D$ \u0111\u1ed1i x\u1ee9ng v\u1edbi $B$ qua $O$.","explain":"<span class='basic_left'>Ta c\u00f3 h\u00ecnh v\u1ebd sau: <br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai9/lv2/img\/D921_TB3.png' \/><\/center><br\/>L\u1ea5y \u0111i\u1ec3m $A (-3; 2)$ v\u00e0 \u0111i\u1ec3m $B (1; 4)$ tr\u00ean h\u1ec7 tr\u1ee5c t\u1ecda \u0111\u1ed9 $Oxy$ nh\u01b0 h\u00ecnh v\u1ebd.<br\/>V\u00ec $ABCD$ l\u00e0 h\u00ecnh b\u00ecnh h\u00e0nh c\u00f3 t\u00e2m \u0111\u1ed1i x\u1ee9ng l\u00e0 $O(0;0)$ n\u00ean $D$ \u0111\u1ed1i x\u1ee9ng v\u1edbi $B$ qua $O$ c\u00f3 t\u1ecda \u0111\u1ed9 l\u00e0 $(-1;-4)$<br\/><span class='basic_pink'>Do \u0111\u00f3 s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $-1$ v\u00e0 $-4$.<\/span><br\/><span class='basic_left'>Nh\u1eadn x\u00e9t:<\/span>T\u01b0\u01a1ng t\u1ef1 c\u00e2u tr\u00ean, ta c\u00f3 th\u1ec3 t\u00ecm t\u1ecda \u0111\u1ed9 \u0111i\u1ec3m D b\u1eb1ng c\u00e1ch:<br\/>V\u00ec $B$ \u0111\u1ed1i x\u1ee9ng v\u1edbi $D$ qua $O$ $\\Rightarrow O$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $BD$. <br\/>T\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $D$ l\u00e0 :<br\/>$\\left\\{ \\begin{aligned} & {{x}_{D}}=2{{x}_{O}}-{{x}_{B}} \\\\ & {{y}_{D}}=2{{y}_{O}}-{{y}_{B}} \\\\ \\end{aligned} \\right.\\,$$\\Leftrightarrow \\left\\{ \\begin{aligned} & {{x}_{D}}=2.0-1 \\\\ & {{y}_{D}}=2.0-4 \\\\ \\end{aligned} \\right.\\,$$\\Leftrightarrow \\left\\{ \\begin{aligned} & {{x}_{D}}=-1 \\\\ & {{y}_{D}}=-4 \\\\ \\end{aligned} \\right.$ <br\/>$\\Rightarrow D\\left( -1;-4 \\right)$ <\/span> <\/span>"}]}],"id_ques":26},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"select":["A. $\\sqrt{13}$","B. $2\\sqrt{13}$","C. $3\\sqrt{13}$","D. $4\\sqrt{13}$"],"ques":"<span class='basic_left'> Cho $A (-3; 2), B (1; 4)$. $ABCD$ l\u00e0 h\u00ecnh b\u00ecnh h\u00e0nh nh\u1eadn g\u1ed1c $O$ l\u00e0m t\u00e2m \u0111\u1ed1i x\u1ee9ng. <br\/><b>C\u00e2u 3:<\/b> \u0110\u1ed9 d\u00e0i \u0111o\u1ea1n $AC$ l\u00e0 bao nhi\u00eau?<\/span>","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>H\u1ea1 $AH \\bot Oy$ t\u1ea1i $H$.<br\/>\u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Py - ta - go v\u00e0o tam gi\u00e1c $OAH$ vu\u00f4ng t\u1ea1i $H$ <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ta c\u00f3 h\u00ecnh v\u1ebd sau: <br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai9/lv2/img\/D921_TB4.png' \/><\/center><br\/>H\u1ea1 $AH \\bot Oy$ t\u1ea1i $H$ $\\Rightarrow H (0; 2)$<br\/>Theo h\u00ecnh v\u1ebd ta c\u00f3 $AH= 3; OH =2$.<br\/>\u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Py - ta - go v\u00e0o tam gi\u00e1c $OAH$ vu\u00f4ng t\u1ea1i $H$, ta c\u00f3: $AO^2=AH^2+OH^2$ <br\/> $\\Rightarrow AO^2=9+4=13$<br\/>$\\Rightarrow AO=\\sqrt{13}$ <br\/> $ \\Rightarrow AC=2AO = 2\\sqrt{13}$<br\/><span class='basic_pink'>\u0110\u00e1p \u00e1n \u0111\u00fang l\u00e0 $2\\sqrt{13}$.<\/span>"}]}],"id_ques":27},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"select":["A. $y_{max} = \\dfrac{13}{4}, x = \\dfrac{3}{2}$","B. $y_{max} = \\dfrac{11}{4}, x = \\dfrac{1}{2}$","C. $y_{max} = \\dfrac{13}{5}, x = \\dfrac{3}{2}$"],"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai9/lv2/img\/9.jpg' \/><\/center>Cho h\u00e0m s\u1ed1 $y=-x^2+3x+1$. T\u00ecm gi\u00e1 tr\u1ecb l\u1edbn nh\u1ea5t c\u1ee7a h\u00e0m s\u1ed1 \u0111\u00f3. <br\/>\u0110\u00e1p \u00e1n: $y_{max}=$ ? khi $x$ = ?","hint":"\u0110\u01b0a h\u00e0m s\u1ed1 \u0111\u00e3 cho v\u1ec1 d\u1ea1ng $y = b\u2212[f(x)]^2 $","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: D\u1ef1a v\u00e0o h\u1eb1ng \u0111\u1eb3ng th\u1ee9c ${{A}^{2}}\\pm 2AB+{{B}^{2}}={{\\left( A\\pm B \\right)}^{2}}$ \u0111\u1ec3 \u0111\u01b0a bi\u1ec3u th\u1ee9c v\u1ec1 d\u1ea1ng $T=b-{{\\left[ f\\left( x \\right) \\right]}^{2}}$ <br\/>B\u01b0\u1edbc 2: V\u00ec $-f{{\\left[ \\left( x \\right) \\right]}^{2}}\\le 0\\,\\,\\forall x$ n\u00ean $T\\le b$ . <br\/> Suy ra ${{T}_{\\text{max}}}=b\\Leftrightarrow f\\left( x \\right)=0$ <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ta c\u00f3 $y=-{{x}^{2}}+3x+1\\,$$=-(x^2-2.\\dfrac{3}{2}.x+\\dfrac{9}{4})+\\dfrac{9}{4}+1\\,$$=-{{\\left( x-\\dfrac{3}{2} \\right)}^{2}}+\\dfrac{13}{4}\\le \\dfrac{13}{4}$ <br\/>${{y}_{\\max }}=\\dfrac{13}{4}\\Leftrightarrow {{\\left( x -\\dfrac{3}{2} \\right)}^{2}}=0\\,$$\\Leftrightarrow x=\\dfrac{3}{2}$ <br\/>V\u1eady ${{y}_{\\max }}=\\dfrac{13}{4}\\Leftrightarrow x= \\dfrac{3}{2}$<br\/><span class='basic_pink'>\u0110\u00e1p \u00e1n \u0111\u00fang l\u00e0 y_{max} = \\dfrac{13}{4} khi x = \\dfrac{3}{2}$<\/span><\/span>"}]}],"id_ques":28},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"select":["A. $\\dfrac{1}{3}$","B. $\\dfrac{2}{3}$","C. $\\dfrac{4}{3}$"],"ques":"<span class='basic_left'>Cho h\u00e0m s\u1ed1 $f(x)= 2x+1$ v\u00e0 $g(x) =x + 3$<br\/>T\u00ecm $a$ sao cho $f(a+1) =g(2-a)$.<br\/>Gi\u00e1 tr\u1ecb c\u1ee7a $a$ t\u00ecm \u0111\u01b0\u1ee3c l\u00e0 ? <\/span>","hint":"T\u00ednh $f(a+1)$ v\u00e0 $g(2-a)$ v\u00e0 gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh $f(a+1)=g(2\u2212a)$ \u0111\u1ec3 t\u00ecm a. ","explain":"<span class='basic_left'> Ta c\u00f3: <br\/> $\\begin{align} & f\\left( a+1 \\right)=2(a +1)+1=2a+3 \\\\ & g\\left( 2-a \\right)=2-a+3=5-a\\\\ &\\text{Ta c\u00f3:}\\\\&\\,\\,\\,\\,\\,\\, f\\left( a+1 \\right)=g\\left( 2-a \\right)\\\\&\\Leftrightarrow 2a +3 =5-a \\\\ &\\Leftrightarrow 3a=2 \\\\ & \\Leftrightarrow a=\\dfrac{2}{3} \\\\ \\end{align}$<br\/><span class='basic_pink'> \u0110\u00e1p \u00e1n \u0111\u00fang l\u00e0: $\\dfrac{2}{3}$. <\/span>"}]}],"id_ques":29},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"fill_the_blank","correct":[[["2"],["2"],["4"],["2"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"Cho h\u00ecnh v\u1ebd sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai9/lv2/img\/D921_TB2.png' \/><\/center> <span class='basic_left'> Bi\u1ebft \u0111\u01b0\u1eddng th\u1eb3ng song song v\u1edbi tr\u1ee5c $Ox$ v\u00e0 c\u1eaft tr\u1ee5c $Oy$ t\u1ea1i \u0111i\u1ec3m c\u00f3 tung \u0111\u1ed9 $y= 2$ l\u1ea7n l\u01b0\u1ee3t c\u1eaft c\u00e1c \u0111\u01b0\u1eddng th\u1eb3ng $y=x$ v\u00e0 $y=\\dfrac{x}{2}$ t\u1ea1i hai \u0111i\u1ec3m $A$ v\u00e0 $B$.<br\/><b> C\u00e2u 1: <\/b> T\u1ecda \u0111\u1ed9 $A$ l\u00e0 (_input_;_input_) <br\/> T\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $B$ l\u00e0 (_input_; _input_)","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>Thay $y=2$ v\u00e0o t\u1eebng ph\u01b0\u01a1ng tr\u00ecnh \u0111\u01b0\u1eddng th\u1eb3ng \u0111\u00e3 cho \u0111\u1ec3 t\u00ecm t\u1ecda \u0111\u1ed9 c\u1ee7a $A$ v\u00e0 $B$ <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>+ T\u00ecm t\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $A$. <br\/> Thay $y= 2$ v\u00e0o $y=x$ ta \u0111\u01b0\u1ee3c: $x =2 $ <br\/>Suy ra $A (2 ; 2)$<br\/>+ T\u00ecm t\u1ecda \u0111\u1ed9 \u0111i\u1ec3m $B$.<br\/> Thay $y = 2$ v\u00e0o $y= \\dfrac{x}{2}$ ta \u0111\u01b0\u1ee3c: $ x= 4$<br\/>Suy ra $B (4; 2)$<br\/><span class='basic_pink'>Do \u0111\u00f3 s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u1ea7n l\u01b0\u1ee3t l\u00e0 $2;2;4;2$.<\/span><\/span>"}]}],"id_ques":30},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"fill_the_blank_random","correct":[[["2"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"Cho h\u00ecnh v\u1ebd sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai9/lv2/img\/D921_TB2.png' \/><\/center><span class='basic_left'> Bi\u1ebft \u0111\u01b0\u1eddng th\u1eb3ng song song v\u1edbi tr\u1ee5c $Ox$ v\u00e0 c\u1eaft tr\u1ee5c $Oy$ t\u1ea1i \u0111i\u1ec3m c\u00f3 tung \u0111\u1ed9 $y= 2$ l\u1ea7n l\u01b0\u1ee3t c\u1eaft c\u00e1c \u0111\u01b0\u1eddng th\u1eb3ng $y=x$ v\u00e0 $y=\\dfrac{1}{2}x$ t\u1ea1i hai \u0111i\u1ec3m $A$ v\u00e0 $B$.<br\/><b> C\u00e2u 2: <\/b> Di\u1ec7n t\u00edch tam gi\u00e1c $OAB$ l\u00e0 _input_ (\u0111\u01a1n v\u1ecb di\u1ec7n t\u00edch)","hint":"$S=\\dfrac{1}{2}OH.AB$","explain":"<span class='basic_left'>Theo c\u00e2u 1 tr\u00ean, ta c\u00f3 t\u1ecda \u0111\u1ed9 c\u1ee7a $A$ v\u00e0 $B$ l\u00e0: <br\/>$A(2; 2) , B(4;2 ) \\Rightarrow AB =2$. <br\/>V\u00ec $H(0;2)$ n\u00ean ta c\u00f3 $OH=2$. <br\/>Di\u1ec7n t\u00edch tam gi\u00e1c $OAB$ l\u00e0: <br\/> $S_{OAB}=\\dfrac {1}{2}.OH.AB=\\dfrac{1}{2}.2.2=2$ (\u0111\u01a1n v\u1ecb di\u1ec7n t\u00edch). <br\/><span class='basic_pink'>Do \u0111\u00f3 s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $2$.<\/span><\/span>"}]}],"id_ques":31},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"fill_the_blank","correct":[[["9,3"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"Cho h\u00ecnh v\u1ebd <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai9/lv2/img\/D921_TB2.png' \/><\/center><span class='basic_left'> Bi\u1ebft \u0111\u01b0\u1eddng th\u1eb3ng song song v\u1edbi tr\u1ee5c $Ox$ v\u00e0 c\u1eaft tr\u1ee5c $Oy$ t\u1ea1i \u0111i\u1ec3m c\u00f3 tung \u0111\u1ed9 $y= 2$ l\u1ea7n l\u01b0\u1ee3t c\u1eaft c\u00e1c \u0111\u01b0\u1eddng th\u1eb3ng $y=x$ v\u00e0 $y=2x$ t\u1ea1i hai \u0111i\u1ec3m $A$ v\u00e0 $B$.<br\/><b> C\u00e2u 3: <\/b> Chu vi tam gi\u00e1c $OAB$ $\\approx$ _input_<br\/> (K\u1ebft qu\u1ea3 l\u00e0m tr\u00f2n \u0111\u1ebfn s\u1ed1 th\u1eadp ph\u00e2n th\u1ee9 nh\u1ea5t)","hint":"+ \u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Py - ta - go \u0111\u1ec3 t\u00ednh c\u00e1c c\u1ea1nh $OA, OB$.<br\/>+ Chu vi tam gi\u00e1c $OAB$ b\u1eb1ng $OA +OB+AB$.","explain":"<span class='basic_left'>Theo h\u00ecnh v\u1ebd, $ AH=2, BH=4$<br\/>Theo c\u00e2u 1 tr\u00ean, ta c\u00f3 $A(2; 2) , B(4; 2), OH=2, AB= 2$.<br\/> \u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Pytago v\u00e0o tam gi\u00e1c $OAH$ v\u00e0 $OBH$, ta c\u00f3: <br\/> $OA =\\sqrt{AH^2+OH^2}=\\sqrt{2^2+2^2}=\\sqrt{8}$<br\/> $OB=\\sqrt{BH^2+OH^2}=\\sqrt{4^2+2^2}=\\sqrt{20}$<br\/>Chu vi tam gi\u00e1c $OAB$ l\u00e0: <br\/> $2 + \\sqrt{8}+ \\sqrt{20}\\approx 9,3$ <br\/><span class='basic_pink'>Do \u0111\u00f3 s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $9,3$.<\/span><\/span>"}]}],"id_ques":32},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":"T\u00ecm $m$ \u0111\u1ec3 h\u00e0m s\u1ed1 $y = (m^2 - 4)x+2$ \u0111\u1ed3ng bi\u1ebfn tr\u00ean $\\mathbb{R}$.","select":["A. $m > 2$ ho\u1eb7c $m < -2$ ","B. $m > 2$","C. $m < -2$","D. $-2 < m < 2$"],"hint":"H\u00e0m s\u1ed1 b\u1eadc nh\u1ea5t $y= ax +b\\, (a\\ne 0)$ \u0111\u1ed3ng bi\u1ebfn khi $a > 0$. ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>B\u01b0\u1edbc 1: H\u00e0m s\u1ed1 b\u1eadc nh\u1ea5t $y= ax +b\\, (a\\ne 0)$ \u0111\u1ed3ng bi\u1ebfn khi $a > 0$.<br\/>B\u01b0\u1edbc 2: Gi\u1ea3i b\u1ea5t ph\u01b0\u01a1ng tr\u00ecnh $a>0$: Ph\u00e2n t\u00edch v\u1ebf tr\u00e1i th\u00e0nh nh\u00e2n t\u1eeb r\u1ed3i chia tr\u01b0\u1eddng h\u1ee3p \u0111\u1ec3 gi\u1ea3i.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>H\u00e0m s\u1ed1 $y = (m^2 - 4)x+2$ \u0111\u1ed3ng bi\u1ebfn tr\u00ean $\\mathbb{R}$ <br\/> $\\Leftrightarrow {{m}^{2}}-4>0\\Leftrightarrow \\left( m-2 \\right)\\left( m+2 \\right)>0$ <br\/>Tr\u01b0\u1eddng h\u1ee3p 1: $\\left\\{ \\begin{aligned} & m-2>0 \\\\ & m+2>0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & m>2 \\\\ & m>-2 \\\\ \\end{aligned} \\right.\\,$$\\Leftrightarrow m>2$ <br\/>Tr\u01b0\u1eddng h\u1ee3p 2: $\\left\\{ \\begin{aligned} & m-2<0 \\\\ & m+2<0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & m<2 \\\\ & m<-2 \\\\ \\end{aligned} \\right.\\,$$\\Leftrightarrow m<-2$<br\/>Do \u0111\u00f3 v\u1edbi $m > 2$ ho\u1eb7c $m < - 2$ th\u00ec h\u00e0m s\u1ed1 \u0111\u1ed3ng bi\u1ebfn tr\u00ean $\\mathbb{R}$.<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n l\u00e0 A.<\/span>","column":2}]}],"id_ques":33},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["2"],["-1"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai9/lv2/img\/9.jpg' \/><\/center>Cho h\u00e0m s\u1ed1 $y=x^2+2x+3$.<br\/>T\u00ecm gi\u00e1 tr\u1ecb nh\u1ecf nh\u1ea5t c\u1ee7a h\u00e0m s\u1ed1 \u0111\u00f3.<br\/>\u0110\u00e1p \u00e1n: $y_{min}=$ _input_ khi $x =$ _input_","hint":"\u0110\u01b0a h\u00e0m s\u1ed1 \u0111\u00e3 cho v\u1ec1 d\u1ea1ng $y = a+[f(x)]^2 $.","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span>B\u01b0\u1edbc 1: D\u1ef1a v\u00e0o h\u1eb1ng \u0111\u1eb3ng th\u1ee9c ${{A}^{2}}\\pm 2AB+{{B}^{2}}={{\\left( A\\pm B \\right)}^{2}}$ \u0111\u1ec3 \u0111\u01b0a bi\u1ec3u th\u1ee9c v\u1ec1 d\u1ea1ng $T=a+{{\\left[ f\\left( x \\right) \\right]}^{2}}$<br\/>B\u01b0\u1edbc 2: V\u00ec $f{{\\left[ \\left( x \\right) \\right]}^{2}}\\ge 0\\,\\,\\forall x$ n\u00ean $T\\ge a$ . Suy ra ${{T}_{\\min }}=a\\Leftrightarrow f\\left( x \\right)=0$ <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ta c\u00f3 $y={{x}^{2}}+2x+3={{\\left( x+1 \\right)}^{2}}+2\\ge 2$ <br\/>${{y}_{\\min }}=2\\Leftrightarrow {{\\left( x+1 \\right)}^{2}}=0\\Leftrightarrow x=-1$ <br\/>V\u1eady ${{y}_{\\min }}=2\\Leftrightarrow x=-1$<br\/><span class='basic_pink'>Do \u0111\u00f3 s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $2$ v\u00e0 $-1$.<\/span>"}]}],"id_ques":34},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["1"]]],"list":[{"point":5,"width":40,"content":"","type_input":"","type_check":"","ques":"Cho h\u00e0m s\u1ed1 $y=-x^2-2x+3$. Gi\u00e1 tr\u1ecb c\u1ee7a h\u00e0m s\u1ed1 t\u1ea1i $x= \\sqrt{3}-1$ l\u00e0 _input_","hint":"Thay $x=\\sqrt{3}-1$ v\u00e0o h\u00e0m s\u1ed1 $y=-x^2-2x+3$.","explain":"<span class='basic_left'> Thay $x=\\sqrt{3}-1$ v\u00e0o h\u00e0m s\u1ed1 $y=-x^2-2x+3$ ta \u0111\u01b0\u1ee3c:<br\/> $\\begin{align} y & =-{{\\left( \\sqrt{3}-1 \\right)}}-2\\left( \\sqrt{3}-1 \\right)+3 \\\\ & =-{{\\left( 3-2\\sqrt{3}+1 \\right)}^{2}}-2\\left( \\sqrt{3}-1 \\right)+3 \\\\ & =-\\left( 4-2\\sqrt{3} \\right)-2\\sqrt{3}+2+3 \\\\ & =-4+2\\sqrt{3}-2\\sqrt{3}+5 \\\\ & =1 \\\\ \\end{align}$ <br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $1$.<\/span>"}]}],"id_ques":35},{"time":24,"part":[{"title":"Kh\u1eb3ng \u0111\u1ecbnh sau \u0110\u00fang hay Sai","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":"Khi $x<0$, h\u00e0m s\u1ed1 $y=f(x)= 2x^2$ ngh\u1ecbch bi\u1ebfn. ","select":["A. \u0110\u00fang","B. Sai"],"explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>- L\u1ea5y $x_{1} < x_2$ ($x_1,x_2$ th\u1ecfa m\u00e3n \u0111i\u1ec1u ki\u1ec7n x\u00e1c \u0111\u1ecbnh). X\u00e9t hi\u1ec7u $f(x_{1}) -f(x_{2})$ <br\/>+ N\u1ebfu $f(x_{1}) -f(x_{2}) < 0$ th\u00ec $f(x_{1}) < f(x_{2})$: H\u00e0m s\u1ed1 \u0111\u1ed3ng bi\u1ebfn trong kho\u1ea3ng $(a;b)$ <br\/>+ N\u1ebfu $f(x_{1}) -f(x_{2}) > 0$ th\u00ec $f(x_{1}) > f(x_{2})$: H\u00e0m s\u1ed1 ngh\u1ecbch bi\u1ebfn trong kho\u1ea3ng $(a;b)$ <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>V\u1edbi ${{x}_{1}}<{{x}_{2}}<0$, ta c\u00f3: <br\/>$f\\left( {{x}_{1}} \\right)-f\\left( {{x}_{2}} \\right)=2x_{1}^{2}-2x_{2}^{2}\\,$$=2\\left( {{x}_{1}}-{{x}_{2}} \\right)\\left( {{x}_{1}}+{{x}_{2}} \\right)$ <br\/>V\u00ec ${{x}_{1}}<{{x}_{2}}<0$ suy ra :<br\/>$\\left. \\begin{aligned} & {{x}_{1}}+{{x}_{2}}<0 \\\\ & {{x}_{1}}-{{x}_{2}}<0 \\\\ \\end{aligned} \\right\\}\\Rightarrow f\\left( {{x}_{1}} \\right)-f\\left( {{x}_{2}} \\right)>0\\,$$\\Rightarrow f\\left( {{x}_{1}} \\right)>f\\left( {{x}_{2}} \\right)$ <br\/>Do \u0111\u00f3, khi $x<0$ h\u00e0m s\u1ed1 ngh\u1ecbch bi\u1ebfn <br\/> <span class='basic_pink'>V\u1eady kh\u1eb3ng \u0111\u1ecbnh tr\u00ean l\u00e0 \u0110\u00fang. <\/span><\/span>","column":2}]}],"id_ques":36},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"select":["A. $\\sqrt{3}$","B. $2\\sqrt{3}$","C. $3\\sqrt{3}$"],"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai9/lv2/img\/9.jpg' \/><\/center>H\u00e0m s\u1ed1 $y=\\sqrt{3}x -mx + 1$ l\u00e0 h\u00e0m h\u1eb1ng khi $m=$ ?","hint":"H\u00e0m s\u1ed1 $y = ax+ b$ l\u00e0 h\u00e0m h\u1eb1ng khi $a= 0$. ","explain":"<span class='basic_left'> Ta c\u00f3: $y=\\sqrt{3}x-mx+1\\,$$\\Leftrightarrow y=x\\left( \\sqrt{3}-m \\right)+1$<br\/>H\u00e0m s\u1ed1 $y=\\sqrt{3}x-mx+1$ l\u00e0 h\u00e0m h\u1eb1ng $\\Leftrightarrow \\sqrt{3}-m=0 \\Leftrightarrow m= \\sqrt{3}$<br\/><span class='basic_pink'> V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $\\sqrt{3}$.<\/span>"}]}],"id_ques":37},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":"H\u00e0m s\u1ed1 $y= (m^2-m-2)x+2$ l\u00e0 h\u00e0m s\u1ed1 b\u1eadc nh\u1ea5t khi:","select":["A. $m \\ne -1$ ","B. $m \\ne 2$","C. $m \\ne -1$ ho\u1eb7c $m \\ne 2$","D. $m \\ne -1$ v\u00e0 $m \\ne 2$"],"hint":"H\u00e0m s\u1ed1 b\u1eadc nh\u1ea5t c\u00f3 d\u1ea1ng $y= ax +b\\, (a\\ne 0)$ ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>B\u01b0\u1edbc 1: T\u00ecm \u0111i\u1ec1u ki\u1ec7n \u0111\u1ec3 h\u00e0m s\u1ed1 \u0111\u00e3 cho l\u00e0 h\u00e0m b\u1eadc nh\u1ea5t.<br\/>B\u01b0\u1edbc 2: Ph\u00e2n t\u00edch h\u1ec7 s\u1ed1 $a$ th\u00e0nh nh\u00e2n t\u1eed r\u1ed3i t\u00ecm $m$. <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> H\u00e0m s\u1ed1 $y= (m^2-m-2)x+2$ l\u00e0 h\u00e0m s\u1ed1 b\u1eadc nh\u1ea5t khi: <br\/>$\\begin{aligned} & \\,\\,\\,\\,\\,\\,\\,\\,{{m}^{2}}-m-2\\ne 0 \\\\ & \\Leftrightarrow {{m}^{2}}+m-2m-2\\ne 0 \\\\ & \\Leftrightarrow m(m+1)-2(m+1) \\ne 0 \\\\ & \\Leftrightarrow \\left( m+1 \\right)\\left( m-2 \\right)\\,\\,\\,\\,\\,\\ne 0 \\\\ & \\Leftrightarrow \\left\\{ \\begin{aligned} & m+1\\ne 0 \\\\ & m-2\\ne 0 \\\\\\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & m\\ne -1 \\\\ & m\\ne 2 \\\\ \\end{aligned} \\right. \\\\ \\end{aligned}$ <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n l\u00e0 D. <\/span>","column":2}]}],"id_ques":38},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"select":["A. $\\sqrt{5}$","B. $2\\sqrt{5}$","C. $3\\sqrt{5}$"],"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai9/lv2/img\/4.jpg' \/><\/center>Tr\u00ean m\u1eb7t ph\u1eb3ng t\u1ecda \u0111\u1ed9 $Oxy$ cho \u0111i\u1ec3m $A (4; 2)$. \u0110\u1ed9 d\u00e0i \u0111o\u1ea1n $OA$ l\u00e0 ?","hint":"H\u1ea1 $AH \\bot Ox$ t\u1ea1i $H$. <br\/>\u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Pytago v\u00e0o tam gi\u00e1c vu\u00f4ng $OAH$. ","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai9/lv2/img\/D921_TB6.png' \/><\/center><br\/>H\u1ea1 $AH \\bot Ox$ t\u1ea1i $H$ $\\Rightarrow H (4; 0)$<br\/>Theo h\u00ecnh v\u1ebd ta c\u00f3 $AH= 2; OH =4$<br\/>X\u00e9t $\\Delta AHO$ vu\u00f4ng t\u1ea1i $H$ c\u00f3:<br\/> $\\begin{align} AO^2&=AH^2+OH^2\\,\\,(\u0110\u1ecbnh\\,\\,l\u00fd\\,\\,Py - ta - go)\\\\&=4+16\\\\&=20 \\\\ \\Rightarrow AO&= 2\\sqrt{5}\\\\ \\end{align}$ <br\/><span class='basic_pink'>Do \u0111\u00f3 s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $2\\sqrt{5}$.<\/span>"}]}],"id_ques":39},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"select":["A. $\\dfrac{6}{11}$","B. $\\dfrac{7}{11}$","C. $\\dfrac{8}{11}$"],"ques":"<span class='basic_left'> Cho h\u00e0m s\u1ed1 $f(x)= 5x - 3$ v\u00e0 $g(x) =-\\dfrac{1}{2}x +1$. T\u00ecm $a$ sao cho $f(a) =g(a)$. Gi\u00e1 tr\u1ecb c\u1ee7a $a$ t\u00ecm \u0111\u01b0\u1ee3c l\u00e0 ?","hint":"Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh $f(a) = g(a)$ ","explain":"<span class='basic_left'> Ta c\u00f3: <br\/> $\\begin{align} & f\\left( a \\right)=5a-3 \\\\ & g\\left( a \\right)=-\\dfrac{1}{2}a+1 \\\\ & f\\left( a \\right)=g\\left( a \\right)\\Leftrightarrow 5a-3=-\\dfrac{1}{2}a+1 \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\Leftrightarrow \\dfrac{11}{2}a=4 \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\Leftrightarrow a=\\dfrac{8}{11} \\\\ \\end{align}$<br\/><span class='basic_pink'> V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $\\dfrac{8}{11}$. <\/span>"}]}],"id_ques":40}],"lesson":{"save":0,"level":2}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý