đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","temp":"fill_the_blank","correct":[[["150"]]],"list":[{"point":10,"width":50,"type_input":"","ques":" Tr\u00ean \u0111\u01b0\u1eddng tr\u00f2n $\\left( O;\\,R \\right),$ v\u1ebd c\u00e1c d\u00e2y $AB, AC$ sao cho tia $AO$ n\u1eb1m gi\u1eefa hai tia $AB$ v\u00e0 $AC$, bi\u1ebft $AB = R,$ $\\text{s\u0111}\\overset\\frown{AC}={{90}^{o}}$. S\u1ed1 \u0111o cung nh\u1ecf $BC$ l\u00e0 _input_ $^o$","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai13/lv3/img\/h931_K1.png' \/><\/center> <br\/> X\u00e9t $\\Delta OAB$ c\u00f3: <br\/> $OA = OB = AB = R$ <br\/> $\\Rightarrow \\Delta OAB$ \u0111\u1ec1u (\u0111\u1ecbnh ngh\u0129a tam gi\u00e1c \u0111\u1ec1u) <br\/> $\\Rightarrow \\widehat{AOB}={{60}^{o}}$ (t\u00ednh ch\u1ea5t tam gi\u00e1c \u0111\u1ec1u) <br\/> $\\Rightarrow \\text{s\u0111}\\overset\\frown{AB}={{60}^{o}}$ (\u0111\u1ecbnh ngh\u0129a s\u1ed1 \u0111o cung) <br\/> Ta c\u00f3: $\\text{s\u0111}\\overset\\frown{BC}=\\text{s\u0111}\\overset\\frown{AB}+\\text{s\u0111}\\overset\\frown{AC}$ (do $A$ n\u1eb1m gi\u1eefa $B$ v\u00e0 $C$) <br\/> $\\Rightarrow \\text{s\u0111}\\overset\\frown{BC}={{60}^{o}}+{{90}^{o}}={{150}^{o}}$ <br\/> <span class='basic_pink'> V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $150$ <\/span><\/span> "}]}],"id_ques":1431},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","temp":"fill_the_blank","correct":[[["200"]]],"list":[{"point":10,"width":50,"type_input":"","input_hint":["frac"],"ques":" <span class='basic_left'> Cho h\u00ecnh v\u1ebd, <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai13/lv3/img\/h931_K2.png' \/><\/center> <br\/> Bi\u1ebft $\\widehat{BAD}={{33}^{o}};\\widehat{CAD}={{67}^{o}}$ v\u00e0 $AD$ l\u00e0 \u0111\u01b0\u1eddng k\u00ednh c\u1ee7a \u0111\u01b0\u1eddng tr\u00f2n $(O)$. T\u00ednh s\u1ed1 \u0111o c\u1ee7a $\\overset\\frown{BDC}$. <br\/> <b> \u0110\u00e1p s\u1ed1: <\/b> $\\text{s\u0111}\\overset\\frown{BDC}=$ _input_$^o$ ","explain":"<span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai13/lv3/img\/h931_K2.1.png' \/><\/center> <br\/>X\u00e9t $\\Delta OAB$ c\u00f3: <br\/> $OA = OB = R$ <br\/> $\\Rightarrow \\Delta OAB$ c\u00e2n (\u0111\u1ecbnh ngh\u0129a tam gi\u00e1c c\u00e2n) <br\/> $\\Rightarrow \\widehat{BAO}=\\widehat{ABO}$ (t\u00ednh ch\u1ea5t tam gi\u00e1c c\u00e2n) <br\/> M\u00e0 $\\,\\widehat{BOD}=\\widehat{BAO}+\\widehat{ABO}$ (\u0111\u1ecbnh l\u00ed g\u00f3c ngo\u00e0i t\u1ea1i m\u1ed9t \u0111\u1ec9nh c\u1ee7a tam gi\u00e1c) <br\/> $\\Rightarrow \\widehat{BOD}=2\\widehat{BAO}={{2.33}^{o}}={{66}^{o}}$ <br\/> $\\Rightarrow \\text{s\u0111}\\overset\\frown{BD}={{66}^{o}}$ (\u0111\u1ecbnh ngh\u0129a s\u1ed1 \u0111o cung) <br\/> Ch\u1ee9ng minh t\u01b0\u01a1ng t\u1ef1, ta t\u00ednh \u0111\u01b0\u1ee3c: $\\text{s\u0111}\\overset\\frown{DC}={{134}^{o}}$ <br\/> $\\Rightarrow \\text{s\u0111}\\overset\\frown{BDC} = \\text{s\u0111}\\overset\\frown{BD}+\\text{s\u0111}\\overset\\frown{DC}$ ($D$ n\u1eb1m gi\u1eefa $B$ v\u00e0 $C$) <br\/> $\\Rightarrow \\text{s\u0111}\\overset\\frown{BDC} = {{66}^{o}}+{{134}^{o}} = {{200}^{o}}$ <br\/> <span class='basic_pink'> V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $200$<\/span> <\/span>"}]}],"id_ques":1432},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","temp":"fill_the_blank","correct":[[["280"]]],"list":[{"point":10,"width":50,"type_input":"","ques":" <span class='basic_left'>Cho tam gi\u00e1c $ABC$, c\u00f3 $\\widehat{A}={{70}^{o}},\\widehat{B}=35^o.$ V\u1ebd \u0111\u01b0\u1eddng tr\u00f2n t\u00e2m $B$, b\u00e1n k\u00ednh $BA$ v\u00e0 \u0111\u01b0\u1eddng tr\u00f2n t\u00e2m $C$, b\u00e1n k\u00ednh $CA$, ch\u00fang c\u1eaft nhau \u1edf $D$ (kh\u00e1c $A$). T\u00ednh t\u1ed5ng s\u1ed1 \u0111o cung nh\u1ecf $AD$ c\u1ee7a \u0111\u01b0\u1eddng tr\u00f2n t\u00e2m $B$ v\u00e0 s\u1ed1 \u0111o cung l\u1edbn $AD$ c\u1ee7a \u0111\u01b0\u1eddng tr\u00f2n t\u00e2m $C$. <br\/> <b> \u0110\u00e1p s\u1ed1: <\/b> T\u1ed5ng s\u1ed1 \u0111o c\u1ee7a hai cung l\u00e0 _input_$^o$","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai13/lv3/img\/h931_K3.png' \/><\/center> <br\/> G\u1ecdi $\\overset\\frown{ApD}$ l\u00e0 cung nh\u1ecf c\u1ee7a $(C; CA)$ v\u00e0 $\\overset\\frown{AqD}$ l\u00e0 cung l\u1edbn c\u1ee7a $(C; CA)$ <br\/> X\u00e9t $\\Delta BAC$ c\u00f3: <br\/> $\\widehat{BAC}+\\widehat{ABC}+\\widehat{ACB}={{180}^{o}}$ (t\u1ed5ng ba g\u00f3c c\u1ee7a tam gi\u00e1c) <br\/> $\\Rightarrow \\widehat{ACB}={{180}^{o}}-\\widehat{BAC}-\\widehat{ABC}$ <br\/> $={{180}^{o}}-{{70}^{o}}-{{35}^{o}}={{75}^{o}}$ <br\/> X\u00e9t $\\Delta BAC$v\u00e0 $\\Delta BDC$ c\u00f3: <br\/> $AB = BD$ (c\u00f9ng l\u00e0 b\u00e1n k\u00ednh c\u1ee7a $(B)$) <br\/> $AC = DC$ (c\u00f9ng l\u00e0 b\u00e1n k\u00ednh c\u1ee7a $(C)$) <br\/> $BC$ chung <br\/> $\\Rightarrow \\Delta BAC=\\Delta BDC\\,(c.c.c)$ <br\/> $\\Rightarrow \\left\\{ \\begin{align} & \\widehat{ABC}=\\widehat{DBC}={{35}^{o}} \\\\ & \\widehat{ACB}=\\widehat{DCB}={{75}^{o}} \\\\ \\end{align} \\right.$ (hai g\u00f3c t\u01b0\u01a1ng \u1ee9ng) <br\/> $\\Rightarrow \\left\\{ \\begin{align} & \\widehat{ABD}=\\widehat{ABC}+\\widehat{DBC}={{2.35}^{o}}={{70}^{o}} \\\\ & \\widehat{ACD}=\\widehat{ACB}+\\widehat{DCB}={{2.75}^{o}}={{150}^{o}} \\\\ \\end{align} \\right.$ <br\/> $\\Rightarrow \\left\\{ \\begin{align} & \\text{s\u0111}\\overset\\frown{ACD}={{70}^{o}} \\\\ & \\text{s\u0111}\\overset\\frown{ApD}={{150}^{o}} \\\\ \\end{align} \\right.$ (\u0111\u1ecbnh ngh\u0129a s\u1ed1 \u0111o cung) <br\/> Ta c\u00f3: $\\text{s\u0111}\\overset\\frown{AqD}={{360}^{o}}-{{150}^{o}}={{210}^{o}}$ <br\/> $\\Rightarrow \\text{s\u0111}\\overset\\frown{ACD}+\\text{s\u0111}\\overset\\frown{AqD}={{70}^{o}}+{{210}^{o}}={{280}^{o}}$ <br\/> <span class='basic_pink'> V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $280$ <\/span> <\/span>"}]}],"id_ques":1433},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u (>; <; =) th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","temp":"fill_the_blank","correct":[[["<"]]],"list":[{"point":10,"width":50,"type_input":"","ques":" <span class='basic_left'> Cho hai \u0111\u01b0\u1eddng tr\u00f2n $\\left( O;\\,R \\right)\\,$v\u00e0 $\\,\\left( O';\\,R' \\right)$ c\u1eaft nhau t\u1ea1i hai \u0111i\u1ec3m $A$ v\u00e0 $B$ ($R < R\u2019$). K\u1ebb hai \u0111\u01b0\u1eddng k\u00ednh $BOC$ v\u00e0 $BO\u2019D$. So s\u00e1nh s\u1ed1 \u0111o hai cung nh\u1ecf $AC$ v\u00e0 $AD$. <br\/> <b> \u0110\u00e1p s\u1ed1: <\/b> $\\text{s\u0111}\\overset\\frown{AC}$ _input_ $\\text{s\u0111}\\overset\\frown{AD}$","hint":"S\u1eed d\u1ee5ng quan h\u1ec7 gi\u1eefa g\u00f3c v\u00e0 c\u1ea1nh \u0111\u1ed1i di\u1ec7n trong 1 tam gi\u00e1c \u0111\u1ec3 so s\u00e1nh hai g\u00f3c \u1edf t\u00e2m r\u1ed3i k\u1ebft lu\u1eadn","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai13/lv3/img\/h931_K4.png' \/><\/center> <br\/> D\u1ec5 d\u00e0ng ch\u1ee9ng minh $C; A; D$ th\u1eb3ng h\u00e0ng <br\/> Ta c\u00f3: $R < R\u2019$ <br\/> $\\Rightarrow BC=2R < 2R'=BD$ <br\/> X\u00e9t $\\Delta BCD$ c\u00f3: <br\/> $BC < BD \\Rightarrow \\widehat{BDC}<\\widehat{BCD}$ (quan h\u1ec7 gi\u1eefa g\u00f3c v\u00e0 c\u1ea1nh \u0111\u1ed1i di\u1ec7n trong tam gi\u00e1c) (1) <br\/> X\u00e9t $\\Delta AOC$ c\u00f3: <br\/> $OA=OC=R$ <br\/> $\\Rightarrow \\Delta AOC$ c\u00e2n tai $O$ (\u0111\u1ecbnh ngh\u0129a tam gi\u00e1c c\u00e2n) <br\/> $\\Rightarrow \\widehat{CAO}=\\widehat{ACO}$ (t\u00ednh ch\u1ea5t tam gi\u00e1c c\u00e2n) <br\/> M\u00e0 $\\widehat{ACO}+\\widehat{CAO}+\\widehat{COA}={{180}^{o}}$ (t\u1ed5ng ba g\u00f3c c\u1ee7a tam gi\u00e1c) <br\/> $\\Rightarrow \\widehat{AOC} = 180^o - \\widehat{OAC} - \\widehat{OCA}$ <br\/> $ = 180^o - 2\\widehat{OAC} = 180^o - 2\\widehat{BCD}$ (2) <br\/> Ch\u1ee9ng minh t\u01b0\u01a1ng t\u1ef1: $\\widehat{DO'A}= 180^o - 2\\widehat{O'DA} = 180^o - 2\\widehat{BDC}$(3) <br\/> T\u1eeb (1), (2) v\u00e0 (3), suy ra $\\widehat{COA} < \\widehat{DO'A}$ <br\/> $\\Rightarrow \\text{s\u0111}\\overset\\frown{AC}<\\text{s\u0111}\\overset\\frown{AD}$ (\u0111\u1ecbnh ngh\u0129a s\u1ed1 \u0111o cung) <br\/> <span class='basic_pink'> V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n l\u00e0 $<$ <\/span><\/span> "}]}],"id_ques":1434},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u (>; <; =) th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","temp":"fill_the_blank","correct":[[["="]]],"list":[{"point":10,"width":50,"type_input":"","ques":"<span class='basic_left'> Cho \u0111\u01b0\u1eddng tr\u00f2n $\\left( O;R \\right)\\,$v\u00e0 d\u00e2y $AB$ kh\u00f4ng \u0111i qua $O$. Tr\u00ean d\u00e2y $AB$ l\u1ea5y c\u00e1c \u0111i\u1ec3m $M,\\,N$ sao cho $AM = MN = NB$. Tia $OM, \\, ON$ c\u1eaft $(O)$ l\u1ea7n l\u01b0\u1ee3t t\u1ea1i $C$ v\u00e0 $D$. H\u00e3y so s\u00e1nh s\u1ed1 \u0111o hai cung nh\u1ecf $\\overset\\frown{AC}$ v\u00e0 $\\overset\\frown{BD}.$ <br\/> <b> \u0110\u00e1p s\u1ed1: <\/b> s\u0111$\\overset\\frown{AC}$ _input_ s\u0111$\\overset\\frown{BD}$ ","explain":"<span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai13/lv3/img\/h931_K5.png' \/><\/center> <br\/>X\u00e9t $\\Delta OAB$ c\u00f3: <br\/> $OA = OB = R$ <br\/> $\\Rightarrow \\Delta OAB$ c\u00e2n (\u0111\u1ecbnh ngh\u0129a tam gi\u00e1c c\u00e2n) <br\/> $\\Rightarrow \\widehat{BAO}=\\widehat{ABO}$ (t\u00ednh ch\u1ea5t tam gi\u00e1c c\u00e2n) <br\/> X\u00e9t $\\Delta AOM$ v\u00e0 $\\,\\Delta BON$ c\u00f3: <br\/> $\\left\\{ \\begin{align} & OA=OB=R \\\\ & \\widehat{OAM}=\\widehat{OBN}(\\text{ch\u1ee9ng minh tr\u00ean}) \\\\ & AM=BN\\left( \\text{gi\u1ea3 thi\u1ebft} \\right) \\\\ \\end{align} \\right.$ <br\/> $\\Rightarrow \\Delta AOM=\\Delta BON\\left( c.g.c \\right)$ <br\/> $\\Rightarrow \\widehat{AOM}=\\widehat{BON}$ (hai g\u00f3c t\u01b0\u01a1ng \u1ee9ng) <br\/> $\\Rightarrow \\text{s\u0111}\\overset\\frown{AC}=\\text{s\u0111}\\overset\\frown{BD}$ (\u0111\u1ecbnh ngh\u0129a s\u1ed1 \u0111o cung) <br\/> <span class='basic_pink'> V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n l\u00e0 $=$<\/span> <\/span>"}]}],"id_ques":1435},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u (>; <; =) th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","temp":"fill_the_blank","correct":[[["<"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"<span class='basic_left'> Cho \u0111\u01b0\u1eddng tr\u00f2n $\\left( O;R \\right)\\,$v\u00e0 d\u00e2y $AB$ kh\u00f4ng \u0111i qua $O$. Tr\u00ean d\u00e2y $AB$ l\u1ea5y c\u00e1c \u0111i\u1ec3m $M,\\,N$ sao cho $AM = MN = NB$. Tia $OM,\\, ON$ c\u1eaft $(O)$ l\u1ea7n l\u01b0\u1ee3t t\u1ea1i $C$ v\u00e0 $D$. H\u00e3y so s\u00e1nh s\u1ed1 \u0111o hai cung nh\u1ecf $\\overset\\frown{BD}$ v\u00e0 $\\overset\\frown{CD}.$ <br\/> <b> \u0110\u00e1p s\u1ed1: <\/b> s\u0111$\\overset\\frown{BD}$ _input_ s\u0111$\\overset\\frown{CD}$ ","hint":"G\u1ecdi $I$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $OB$. S\u1eed d\u1ee5ng t\u00ednh ch\u1ea5t b\u1eafc c\u1ea7u v\u00e0 quan h\u1ec7 gi\u1eefa g\u00f3c v\u00e0 c\u1ea1nh \u0111\u1ed1i di\u1ec7n trong tam gi\u00e1c $ONI$ \u0111\u1ec3 so s\u00e1nh hai g\u00f3c \u1edf t\u00e2m th\u00f4ng qua so s\u00e1nh v\u1edbi g\u00f3c $ONI.$","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai13/lv3/img\/h931_K6.png' \/><\/center> G\u1ecdi $I$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $OB$ <br\/> X\u00e9t $\\Delta BMO$ c\u00f3: <br\/> $MN = NB$ (gi\u1ea3 thi\u1ebft) <br\/> $OI = IB$ ($I$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $OB$) <br\/> $\\Rightarrow NI$ l\u00e0 \u0111\u01b0\u1eddng trung b\u00ecnh c\u1ee7a $\\Delta BMO$ <br\/> $\\Rightarrow NI\/\/MO$ (t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng trung b\u00ecnh) <br\/> $\\Rightarrow \\widehat{INO}=\\widehat{MON}$ (hai g\u00f3c sole trong) (1) <br\/> Ta c\u00f3: $OM < OB\\Rightarrow IN=\\dfrac{OM}{2}<\\dfrac{OB}{2}=IO$ <br\/> $\\Rightarrow \\widehat{NOI}<\\widehat{ONI}$ (quan h\u1ec7 gi\u1eefa c\u1ea1nh v\u00e0 g\u00f3c trong $\\Delta NIO$) (2) <br\/> T\u1eeb (1) v\u00e0 (2) $\\Rightarrow \\widehat{NOI}<\\widehat{MON}$ <br\/> $\\Rightarrow \\text{s\u0111}\\overset\\frown{BD}<\\text{s\u0111}\\overset\\frown{CD}$ (\u0111\u1ecbnh ngh\u0129a s\u1ed1 \u0111o cung) <br\/> <span class='basic_pink'> V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n l\u00e0 $<$ <\/span> <\/span>"}]}],"id_ques":1436},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","temp":"fill_the_blank","correct":[[["90"]]],"list":[{"point":10,"width":50,"type_input":"","ques":" <span class='basic_left'> Cho \u0111\u01b0\u1eddng tr\u00f2n $\\left( O;R \\right)\\,$\u0111\u01b0\u1eddng k\u00ednh $AB$, l\u1ea5y c\u00e1c \u0111i\u1ec3m $M, \\, N$ thu\u1ed9c \u0111\u01b0\u1eddng tr\u00f2n $(O)$ sao cho $AM=BN=R\\,\\left( M\\in \\overset\\frown{AN} \\right).$ Qua $O$, k\u1ebb \u0111\u01b0\u1eddng th\u1eb3ng song song v\u1edbi $AN$ c\u1eaft \u0111\u01b0\u1eddng tr\u00f2n $(O)$ t\u1ea1i hai \u0111i\u1ec3m $C$ v\u00e0 $D$ $\\left( D\\in \\overset\\frown{\\,BN\\,} \\right).$ S\u1ed1 \u0111o cung nh\u1ecf $CM$ l\u00e0 _input_$^o$ ","hint":"T\u00ednh s\u1ed1 \u0111o g\u00f3c $COM$ r\u1ed3i suy ra s\u1ed1 \u0111o cung nh\u1ecf $CM$","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai13/lv3/img\/h931_K7.png' \/><\/center> <br\/> Ta c\u00f3: $OA=OM=AM=R$ <br\/> $\\Rightarrow \\Delta OAM$ \u0111\u1ec1u (\u0111\u1ecbnh ngh\u0129a tam gi\u00e1c \u0111\u1ec1u) <br\/> $\\Rightarrow \\widehat{AOM}={{60}^{o}}$ (t\u00ednh ch\u1ea5t tam gi\u00e1c \u0111\u1ec1u) <br\/> $\\Rightarrow \\text{s\u0111}\\overset\\frown{AM}={{60}^{o}}$ (\u0111\u1ecbnh ngh\u0129a s\u1ed1 \u0111o cung) <br\/> Ch\u1ee9ng minh t\u01b0\u01a1ng t\u1ef1 ta \u0111\u01b0\u1ee3c: $\\text{s\u0111}\\overset\\frown{BN}={{60}^{o}}$ <br\/> M\u00e0 $\\widehat{AOM}+\\widehat{MON}+\\widehat{NOB}=\\widehat{AOB}={{180}^{o}}$ <br\/> $\\Rightarrow \\widehat{MON}={{180}^{o}}-\\widehat{AOM}-\\widehat{NOB}={{60}^{o}}$ <br\/> X\u00e9t $\\Delta MON$ c\u00f3: <br\/> $OM=ON=R$ <br\/> $\\widehat{MON}={{60}^{o}}$ <br\/> $\\Rightarrow \\Delta MON$ \u0111\u1ec1u (d\u1ea5u hi\u1ec7u nh\u1eadn bi\u1ebft) <br\/> $\\Rightarrow MN=R$ (\u0111\u1ecbnh ngh\u0129a tam gi\u00e1c \u0111\u1ec1u) <br\/> X\u00e9t t\u1ee9 gi\u00e1c $AMNO$ c\u00f3: <br\/> $OA = AM = MN = NO = R$ <br\/> $\\Rightarrow AMNO$ l\u00e0 h\u00ecnh thoi (d\u1ea5u hi\u1ec7u nh\u1eadn bi\u1ebft) <br\/> $\\Rightarrow AN\\bot MO$ (t\u00ednh ch\u1ea5t h\u00ecnh thoi) <br\/> M\u00e0 $AN\/\/CD$ (gi\u1ea3 thi\u1ebft) <br\/> $\\Rightarrow MO\\bot CD$ (t\u1eeb vu\u00f4ng g\u00f3c \u0111\u1ebfn song song) <br\/> $\\Rightarrow \\widehat{MOC}={{90}^{o}}$$\\Rightarrow \\text{s\u0111}\\overset\\frown{MC}={{90}^{o}}$ (\u0111\u1ecbnh ngh\u0129a s\u1ed1 \u0111o cung) <br\/> <span class='basic_pink'> V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $90$ <\/span><\/span> "}]}],"id_ques":1437},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u (>; <; =) th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","temp":"fill_the_blank","correct":[[["AB","BA"],["AC","CA"],["BC","CB"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"<span class='basic_left'> Cho tam gi\u00e1c nh\u1ecdn $ABC$ n\u1ed9i ti\u1ebfp \u0111\u01b0\u1eddng tr\u00f2n $(O; 1)$ c\u00f3 c\u00e1c c\u1ea1nh $AB=\\sqrt{2};AC=\\sqrt{3}.$ H\u00e3y so s\u00e1nh s\u1ed1 \u0111o c\u00e1c cung nh\u1ecf $AB; BC$ v\u00e0 $AC$. <br\/> <b> \u0110\u00e1p s\u1ed1: <\/b> s\u0111$\\overset\\frown{\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}} < $ s\u0111$\\overset\\frown{\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}} < $ s\u0111$\\overset\\frown{\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}}$ ","explain":"<span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai13/lv3/img\/h931_K8.png' \/><\/center> <br\/>G\u1ecdi $H$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $AC$ <br\/> $\\Rightarrow \\left\\{ \\begin{align} & OH\\bot AC \\\\ & AH=HC=\\dfrac{\\sqrt{3}}{2} \\\\ \\end{align} \\right.$ (\u0111\u1ecbnh l\u00ed \u0111\u01b0\u1eddng k\u00ednh v\u00e0 d\u00e2y cung) <br\/> X\u00e9t $\\Delta AHO$ vu\u00f4ng t\u1ea1i $H$ c\u00f3: <br\/> $\\sin\\widehat{AOH}=\\dfrac{AH}{AO}=\\dfrac{\\dfrac{\\sqrt{3}}{2}}{1}=\\dfrac{\\sqrt{3}}{2}$ <br\/> $\\Rightarrow \\widehat{AOH}={{60}^{o}}$ <br\/> X\u00e9t $\\Delta AOC$ c\u00f3: <br\/> $OA = OC = R$ <br\/> $\\Rightarrow \\Delta AOC$ c\u00e2n t\u1ea1i $O$ <br\/> M\u00e0 $OH\\bot AC$ (ch\u1ee9ng minh tr\u00ean) <br\/> $\\Rightarrow OH$ l\u00e0 \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{AOC}$ <br\/> $\\Rightarrow \\widehat{AOC}=2\\widehat{AOH}={{2.60}^{o}}={{120}^{o}}$ <br\/> Ta c\u00f3: $O{{A}^{2}}+O{{B}^{2}}=1+1=2=A{{B}^{2}}$ <br\/> $\\Rightarrow \\Delta OAB$ vu\u00f4ng t\u1ea1i $O$ (\u0111\u1ecbnh l\u00ed Pitago \u0111\u1ea3o) <br\/> $\\Rightarrow \\widehat{AOB}={{90}^{o}}$ <br\/> L\u1ea1i c\u00f3 $\\widehat{AOB}+\\widehat{BOC}+\\widehat{AOC}={{360}^{o}}$ <br\/> $\\Rightarrow \\widehat{BOC}={{360}^{o}}-\\widehat{AOB}-\\widehat{AOC}$ <br\/> $\\hspace{1,5cm} ={{360}^{o}}-{{90}^{o}}-{{120}^{o}}={{150}^{o}}$ <br\/> $\\Rightarrow \\widehat{AOB}<\\widehat{AOC}<\\widehat{BOC}$ <br\/> $\\Rightarrow \\text{s\u0111}\\overset\\frown{AB}<\\text{s\u0111}\\overset\\frown{AC}<\\text{s\u0111}\\overset\\frown{BC}$ (\u0111\u1ecbnh ngh\u0129a s\u1ed1 \u0111o cung) <br\/> <span class='basic_pink'> V\u1eady c\u00e1c \u0111\u00e1p \u00e1n c\u1ea7n \u0111i\u1ec1n l\u00e0 $AB; AC$ v\u00e0 $BC$ <\/span> <\/span>"}]}],"id_ques":1438},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho hai c\u00e2u","temp":"fill_the_blank","correct":[[["90"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"<span class='basic_left'> T\u1eeb m\u1ed9t \u0111i\u1ec3m $A$ tr\u00ean \u0111\u01b0\u1eddng tr\u00f2n $(O; R)$ ta \u0111\u1eb7t li\u00ean ti\u1ebfp c\u00e1c cung $\\overset\\frown{AB};\\,\\overset\\frown{BC};\\,\\overset\\frown{CD}$ l\u1ea7n l\u01b0\u1ee3t c\u00f3 c\u00e1c d\u00e2y cung b\u1eb1ng $R;\\,R\\sqrt{2};\\,R\\sqrt{3}.$ <br\/> <b> C\u00e2u 1: <\/b> S\u1ed1 \u0111o cung nh\u1ecf $ AD$ l\u00e0 _input_ $^o$","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai13/lv3/img\/h931_K9.png' \/><\/center> G\u1ecdi $H$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $CD$ <br\/> X\u00e9t $\\Delta AOB$ c\u00f3: <br\/> $OA = OB = AB = R$ <br\/> $\\Rightarrow \\Delta AOB$ \u0111\u1ec1u (\u0111\u1ecbnh ngh\u0129a tam gi\u00e1c \u0111\u1ec1u) <br\/> $\\Rightarrow \\widehat{AOB}={{60}^{o}}$ (t\u00ednh ch\u1ea5t tam gi\u00e1c \u0111\u1ec1u) <br\/> X\u00e9t $\\Delta BOC$ c\u00f3: <br\/> $O{{B}^{2}}+O{{C}^{2}}={{R}^{2}}+{{R}^{2}}=2{{R}^{2}}=B{{C}^{2}}$ <br\/> $\\Rightarrow \\Delta BOC$ vu\u00f4ng t\u1ea1i $O$ (\u0111\u1ecbnh l\u00ed Pitago \u0111\u1ea3o) <br\/> $\\Rightarrow \\widehat{BOC}={{90}^{o}}$ <br\/> Do $H$ l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $CD$ (c\u00e1ch d\u1ef1ng) <br\/> $\\Rightarrow \\left\\{ \\begin{align} & OH\\bot CD \\\\ & CH=HD=\\dfrac{R\\sqrt{3}}{2} \\\\ \\end{align} \\right.$ (\u0111\u1ecbnh l\u00ed \u0111\u01b0\u1eddng k\u00ednh v\u00e0 d\u00e2y cung) <br\/> X\u00e9t $\\Delta OHC$ vu\u00f4ng t\u1ea1i $H$ c\u00f3: $\\sin \\widehat{HOC}=\\dfrac{HC}{OC}=\\dfrac{\\dfrac{R\\sqrt{3}}{2}}{R}=\\dfrac{\\sqrt{3}}{2}$ <br\/> $\\Rightarrow \\widehat{HOC}={{60}^{o}}$ <br\/> Ta c\u00f3 $OC=OD$ <br\/> $\\Rightarrow \\Delta COD$ c\u00e2n t\u1ea1i $O$ <br\/> $OH\\bot CD \\Rightarrow OH$ l\u00e0 ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{COD}$ <br\/> $\\Rightarrow \\widehat{COD}=2\\widehat{HOC}={{2.60}^{o}}={{120}^{o}}$ <br\/> L\u1ea1i c\u00f3: $\\widehat{AOB}+\\widehat{BOC}+\\widehat{COD}+\\widehat{DOA}={{360}^{o}}$ <br\/> $\\Rightarrow \\widehat{DOA}=360-\\widehat{AOB}-\\widehat{BOC}-\\widehat{COD}$ <br\/> $={{360}^{o}}-{{60}^{o}}-{{90}^{o}}-{{120}^{o}}={{90}^{o}}$ <br\/> $\\Rightarrow \\text{s\u0111}\\overset\\frown{AD}={{90}^{o}}$ (\u0111\u1ecbnh ngh\u0129a s\u1ed1 \u0111o cung) <br\/> <span class='basic_pink'> V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $90$ <\/span> <\/span>"}]}],"id_ques":1439},{"time":24,"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":10,"ques":"<span class='basic_left'> T\u1eeb m\u1ed9t \u0111i\u1ec3m $A$ tr\u00ean \u0111\u01b0\u1eddng tr\u00f2n $(O; R)$ ta \u0111\u1eb7t li\u00ean ti\u1ebfp c\u00e1c cung $\\overset\\frown{AB};\\,\\overset\\frown{BC};\\,\\overset\\frown{CD}$ l\u1ea7n l\u01b0\u1ee3t c\u00f3 c\u00e1c d\u00e2y cung b\u1eb1ng $R;\\,R\\sqrt{2};\\,R\\sqrt{3}.$ <br\/> <b> C\u00e2u 2: <\/b> T\u1ee9 gi\u00e1c $ABCD$ l\u00e0 h\u00ecnh g\u00ec? <\/span> ","select":["A. H\u00ecnh b\u00ecnh h\u00e0nh ","B. H\u00ecnh thoi ","C. H\u00ecnh ch\u1eef nh\u1eadt","D. H\u00ecnh thang c\u00e2n"],"explain":"<span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/hinhhoc/bai13/lv3/img\/h931_K9.png' \/><\/center> <br\/> Theo c\u00e2u 1, ta c\u00f3: <br\/> $\\bullet \\Delta AOB$ \u0111\u1ec1u <br\/> $\\Rightarrow \\widehat{ABO}={{60}^{o}}$ (t\u00ednh ch\u1ea5t tam gi\u00e1c \u0111\u1ec1u) <br\/> $\\bullet\\Delta BOC$ vu\u00f4ng t\u1ea1i $O$ <br\/> M\u00e0 $OB = OC =R$ <br\/> $\\Rightarrow \\Delta BOC$ vu\u00f4ng c\u00e2n t\u1ea1i $O$ <br\/> $\\Rightarrow \\widehat{CBO}=\\widehat{BCO}={{45}^{o}}$ <br\/> $\\Rightarrow \\widehat{ABC}=\\widehat{ABO}+\\widehat{CBO}={{60}^{o}}+{{45}^{o}}={{105}^{o}}$ (1) <br\/> X\u00e9t $\\Delta COH$ vu\u00f4ng t\u1ea1i $H$ c\u00f3: <br\/> $\\widehat{COH}+\\widehat{HCO}={{90}^{o}}$ <br\/> $\\Rightarrow \\widehat{HCO}={{90}^{o}}-{{60}^{o}}={{30}^{o}}$ <br\/> $\\Rightarrow \\widehat{BCD}=\\widehat{BCO}+\\widehat{DCO}={{45}^{o}}+{{30}^{o}}={{75}^{o}}$ (2) <br\/> T\u1eeb (1) v\u00e0 (2) $\\Rightarrow \\widehat{ABC}+\\widehat{BCD}={{105}^{o}}+{{75}^{o}}={{180}^{o}}$ <br\/> $\\Rightarrow AB\/\/CD$ (hai g\u00f3c trong c\u00f9ng ph\u00eda b\u00f9 nhau) <br\/> $\\Rightarrow ABCD$ l\u00e0 h\u00ecnh thang (3) <br\/> X\u00e9t $\\Delta AOD$ c\u00f3: <br\/> $\\widehat{AOD}={{90}^{o}}$ (theo c\u00e2u 1) <br\/> $OA = OD = R$ <br\/> $\\Rightarrow \\Delta OAD$ vu\u00f4ng c\u00e2n t\u1ea1i $O$ <br\/> $\\Rightarrow \\widehat{ADO}={{45}^{o}}$ <br\/> M\u00e0 $\\Delta COD$ c\u00e2n t\u1ea1i $O$ (theo c\u00e2u 1) <br\/> $\\Rightarrow \\widehat{CDO}=\\widehat{DCO}={{30}^{o}}$ <br\/> $\\Rightarrow \\widehat{ADC}=\\widehat{ADO}+\\widehat{ODC}={{45}^{o}}+{{30}^{o}}={{75}^{o}}$ <br\/> $\\widehat{DCB}=\\widehat{DCO}+\\widehat{BCO}={{30}^{o}}+{{45}^{o}}={{75}^{o}}$ <br\/> $\\Rightarrow \\widehat{ADC}=\\widehat{DCB}$ (4) <br\/> T\u1eeb (3) v\u00e0 (4) suy ra $ABCD$ l\u00e0 h\u00ecnh thang c\u00e2n (d\u1ea5u hi\u1ec7u nh\u1eadn bi\u1ebft) <br\/><span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 D <\/span><\/span>","column":4}]}],"id_ques":1440}],"lesson":{"save":0,"level":3}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý