đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"\u0110i\u1ec1n \u0111\u00e1p \u00e1n v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["1"],["-9"]]],"list":[{"point":10,"width":50,"content":"","type_input":"","ques":" T\u00ecm gi\u00e1 tr\u1ecb nh\u1ecf nh\u1ea5t c\u1ee7a bi\u1ec3u th\u1ee9c $A=\\sqrt{\\dfrac{{{x}^{2}}}{9}+2x+10}$ <br\/>\u0110\u00e1p s\u1ed1: $A_{\\min}=$_input_ khi $x =$ _input_","hint":"S\u1eed d\u1ee5ng h\u1eb1ng \u0111\u1eb3ng th\u1ee9c \u0111\u1ec3 bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c d\u01b0\u1edbi d\u1ea5u c\u0103n v\u1ec1 d\u1ea1ng ${{\\left[ f\\left( x \\right) \\right]}^{2}}+a$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c $A$ v\u1ec1 d\u1ea1ng: $A=\\sqrt{[f(x)]^2 + a}$ <br\/><b>B\u01b0\u1edbc 2:<\/b> \u0110\u00e1nh gi\u00e1 v\u00e0 t\u00ecm gi\u00e1 tr\u1ecb nh\u1ecf nh\u1ea5t c\u1ee7a $A$.<br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><span class='basic_left'>Ta c\u00f3:<br\/> $A=\\sqrt{\\dfrac{{{x}^{2}}}{9}+2x+10}$$\\,=\\sqrt{{{\\left( \\dfrac{x}{3} \\right)}^{2}}+2.\\dfrac{x}{3}.3+{{3}^{2}}+1}$$\\,=\\sqrt{{{\\left( \\dfrac{x}{3}+3 \\right)}^{2}}+1}$ <br\/>V\u00ec ${{\\left( \\dfrac{x}{3}+3 \\right)}^{2}}\\ge \\,0\\,\\forall x\\,\\Rightarrow \\sqrt{{{\\left( \\dfrac{x}{3}+3 \\right)}^{2}}+1}\\ge \\sqrt{1}=1\\,\\forall x$ <br\/>Suy ra, ${{A}_{\\min }}=1\\,\\Leftrightarrow {{\\left( \\dfrac{x}{3}+3 \\right)}^{2}}=0\\,\\Leftrightarrow x=-9$ <\/span> <br\/> <span class='basic_pink'> V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng \u0111\u1ec3 $A_{\\min}=1$ khi $x = -9$<\/span> <\/span><\/span> "}]}],"id_ques":501},{"time":24,"part":[{"title":"","title_trans":"","temp":"fill_the_blank","correct":[[["3"],["-2"]]],"list":[{"point":10,"width":50,"content":"","type_input":"","ques":"T\u00ecm gi\u00e1 tr\u1ecb l\u1edbn nh\u1ea5t c\u1ee7a bi\u1ec3u th\u1ee9c $A=\\sqrt{-a^2-4a+5}$<br\/>\u0110\u00e1p \u00e1n: $A_{\\max}=$_input_ khi $a =$ _input_","hint":"S\u1eed d\u1ee5ng h\u1eb1ng \u0111\u1eb3ng th\u1ee9c \u0111\u1ec3 bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c d\u01b0\u1edbi d\u1ea5u c\u0103n v\u1ec1 d\u1ea1ng $b-{{\\left[ f\\left( a \\right) \\right]}^{2}}$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c $A$ v\u1ec1 d\u1ea1ng: $A=\\sqrt{b - [f(a)]^2}$ <br\/><b>B\u01b0\u1edbc 2:<\/b> \u0110\u00e1nh gi\u00e1 v\u00e0 t\u00ecm gi\u00e1 tr\u1ecb l\u1edbn nh\u1ea5t c\u1ee7a $A$.<br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><span class='basic_left'>Ta c\u00f3:<br\/>$A=\\sqrt{-{{a}^{2}}-4a+5}\\,$$=\\sqrt{-\\left( {{a}^{2}}+4a+4 \\right)+9}$$\\,=\\sqrt{9-{{\\left( a + 2 \\right)}^{2}}}$ <br\/>Nh\u1eadn x\u00e9t: ${{\\left( a+2 \\right)}^{2}}\\ge 0\\,\\,\\,\\,\\forall a$<br\/>$\\Rightarrow 9-{{\\left( a+2 \\right)}^{2}}\\le 9\\,\\,\\forall a$<br\/>$\\Rightarrow A\\le\\sqrt 9\\,\\forall a$ <br\/>V\u1eady ${{A}_{\\text{max}}}=\\sqrt{9}=3\\Leftrightarrow {{\\left( a+2 \\right)}^{2}}=0$$\\,\\Leftrightarrow a=-2$ <br\/> <span class='basic_pink'> V\u1eady $A_{\\max}= 3$ khi $a = -2$<\/span> <\/span> "}]}],"id_ques":502},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["3"],["3"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"T\u00ednh gi\u00e1 tr\u1ecb c\u1ee7a bi\u1ec3u th\u1ee9c: $A=\\sqrt{7+4\\sqrt{3}}-\\sqrt{13-4\\sqrt{3}}$<br\/>\u0110\u00e1p s\u1ed1: $A = \\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}-\\sqrt{\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}}$","hint":"Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c d\u01b0\u1edbi d\u1ea5u c\u0103n v\u1ec1 b\u00ecnh ph\u01b0\u01a1ng c\u1ee7a m\u1ed9t t\u1ed5ng ho\u1eb7c b\u00ecnh ph\u01b0\u01a1ng c\u1ee7a m\u1ed9t hi\u1ec7u","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c trong c\u0103n v\u1ec1 h\u1eb1ng \u0111\u1eb3ng th\u1ee9c $(A \\pm B)^2$<br\/> <b>B\u01b0\u1edbc 2:<\/b> Khai c\u0103n, t\u00ednh gi\u00e1 tr\u1ecb c\u1ee7a bi\u1ec3u th\u1ee9c $A.$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>$\\begin{aligned} A &= \\sqrt{7+4\\sqrt{3}}-\\sqrt{13-4\\sqrt{3}} \\\\ &=\\sqrt{2^2+4\\sqrt{3} + (\\sqrt{3})^2}-\\sqrt{(2\\sqrt{3})^2 - 4\\sqrt{3} + 1} \\\\ & =\\sqrt{{{\\left( 2+\\sqrt{3} \\right)}^{2}}}-\\sqrt{{{\\left( 2\\sqrt{3}-1 \\right)}^{2}}} \\\\ & =\\left| 2+\\sqrt{3} \\right|-\\left| 2\\sqrt{3}-1 \\right| \\\\ & =2+\\sqrt{3}- 2\\sqrt{3}+1\\,\\,(\\text{V\u00ec}\\,\\,2\\sqrt{3}>1)\\\\ & =3-\\sqrt{3} \\\\ \\end{aligned}$<br\/><span class='basic_pink'>V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng \u0111\u1ec3 $A=3-\\sqrt{3}$ <\/span><br\/><b><i>L\u01b0u \u00fd:<\/i><\/b><br\/> V\u1edbi m\u1ecdi s\u1ed1 th\u1ef1c $a$, ta c\u00f3 $\\sqrt{a^2}=|a|=\\left\\{ \\begin{align} & a\\,\\,\\,\\,\\,\\,\\,\\,\\,\\text{n\u1ebfu}\\,\\,\\,\\,\\,\\,\\,\\, a\\ge {0} \\\\ & -a\\,\\,\\,\\,\\text{n\u1ebfu}\\,\\,\\,\\,\\,\\,\\,\\,a< {0} \\\\\\end{align} \\right.$. <\/span> "}]}],"id_ques":503},{"time":24,"part":[{"title":"Kh\u1eb3ng \u0111\u1ecbnh sau \u0110\u00fang hay Sai","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":10,"ques":"$\\sqrt{a+2\\sqrt{a-1}}+\\sqrt{a-2\\sqrt{a-1}}=2$ v\u1edbi $1 < a < 2$ ","select":["A. \u0110\u00fang ","B. Sai "],"hint":" Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c trong c\u0103n v\u1ec1 h\u1eb1ng \u0111\u1eb3ng th\u1ee9c $(A \\pm B)^2$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c trong c\u0103n v\u1ec1 h\u1eb1ng \u0111\u1eb3ng th\u1ee9c $(A \\pm B)^2$<br\/> <b>B\u01b0\u1edbc 2:<\/b> Khai c\u0103n, t\u00ednh gi\u00e1 tr\u1ecb c\u1ee7a bi\u1ec3u th\u1ee9c $A$ <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><span class='basic_left'> Ta c\u00f3:<br\/>$ \\sqrt{a+2\\sqrt{a-1}}+\\sqrt{a-2\\sqrt{a-1}} $<br\/> <br\/>$=\\sqrt{a-1+2\\sqrt{a-1}+1}+$$\\sqrt{a-1-2\\sqrt{a-1}+1}$ <br\/> <br\/> $=\\sqrt{{{\\left( \\sqrt{a-1}+1 \\right)}^{2}}}+$$\\sqrt{{{\\left( \\sqrt{a-1}-1 \\right)}^{2}}}$<br\/> <br\/>$=\\left| \\sqrt{a-1}+1 \\right|+\\left| \\sqrt{a-1}-1 \\right| $<br\/> <br\/> $ =\\sqrt{a-1}+1-\\sqrt{a-1}+1$$ \\,\\,\\,(\\text{V\u00ec}\\,\\,1 < a < 2 \\,\\,\\text{n\u00ean}\\sqrt{a-1}-1<0) $<br\/> <br\/>$ =2$ <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 A <\/span><br\/><b><i>L\u01b0u \u00fd:<\/i><\/b><br\/> V\u1edbi m\u1ecdi s\u1ed1 th\u1ef1c $a$, ta c\u00f3 $\\sqrt{a^2}=|a|=\\left\\{ \\begin{align} & a\\,\\,\\,\\,\\,\\,\\,\\,\\,\\text{n\u1ebfu}\\,\\,\\,\\,\\,\\,\\,\\, a\\ge {0} \\\\ & -a\\,\\,\\,\\,\\text{n\u1ebfu}\\,\\,\\,\\,\\,\\,\\,\\,a< {0} \\\\\\end{align} \\right.$. <\/span>","column":2}]}],"id_ques":504},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":10,"ques":"V\u1edbi $x\\ge 3$, $A=\\sqrt{{{x}^{2}}-6x+9}-2x+1$ c\u00f3 k\u1ebft qu\u1ea3 r\u00fat g\u1ecdn l\u00e0: ","select":["A. $-3x + 2$ ","B. $2 - x$ ","C. $-x -2$","D. $x - 2$"],"hint":"","explain":"<span class='basic_left'><span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> Khai c\u0103n<br\/><b>B\u01b0\u1edbc 2:<\/b> Thu g\u1ecdn $A$<\/span> <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ta c\u00f3:<br\/>$\\begin{aligned}A &= \\sqrt{{{x}^{2}}-6x+9}-2x+1 \\\\ & =\\sqrt{{{\\left( x-3 \\right)}^{2}}}-2x+1 \\\\ & =\\left| x-3 \\right|-2x+1 \\\\ & =x-3-2x+1 \\,\\,\\,(\\text{V\u00ec}\\, x > 3\\, \\text{n\u00ean}\\,\\,|x-3|=x-3 )\\\\ & =-x-2 \\\\ \\end{aligned}$ <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 C <\/span><\/span> <br\/><\/span>","column":2}]}],"id_ques":505},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["-1"]]],"list":[{"point":10,"width":60,"type_input":"","ques":"R\u00fat g\u1ecdn bi\u1ec3u th\u1ee9c $D=\\dfrac{\\sqrt{{{x}^{2}}+10x+25}}{x+5} \\,\\,\\, \\text{v\u1edbi}\\,\\, x < -5$<br\/>\u0110\u00e1p \u00e1n:$D = \\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}$ ","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c trong c\u0103n v\u1ec1 h\u1eb1ng \u0111\u1eb3ng th\u1ee9c $(A \\pm B)^2$<br\/><b>B\u01b0\u1edbc 2:<\/b> Khai c\u0103n, thu g\u1ecdn $A$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>V\u00ec $x<-5\\Leftrightarrow \\left( x+5 \\right)<0\\,$$\\Rightarrow \\left| x+5 \\right|=-\\left( x+5 \\right)$ <br\/>Ta c\u00f3:<br\/> $D=\\dfrac{\\sqrt{{{x}^{2}}+10x+25}}{x+5}\\,$<br\/>$=\\dfrac{\\sqrt{{{\\left( x+5 \\right)}^{2}}}}{x+5}\\,$<br\/>$=\\dfrac{\\left| x+5 \\right|}{x+5}\\,$<br\/>$=\\dfrac{-\\left( x+5 \\right)}{x+5}$<br\/>$=-1$<br\/> <span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $ -1$ <\/span><\/span> "}]}],"id_ques":506},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["4","49"],["49","4"]]],"list":[{"point":10,"width":100,"type_input":"","ques":"Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh $x-9\\sqrt{x}+14=0$ <br\/>\u0110\u00e1p s\u1ed1:$\\left[ \\begin{array}{} x= \\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{} \\\\ x= \\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{} \\end{array} \\right.$","hint":"S\u1eed d\u1ee5ng ph\u01b0\u01a1ng ph\u00e1p t\u00e1ch \u0111\u1ec3 ph\u00e2n t\u00edch \u0111a th\u1ee9c v\u1ebf tr\u00e1i th\u00e0nh nh\u00e2n t\u1eed","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> T\u00ecm \u0111i\u1ec1u ki\u1ec7n c\u00f3 ngh\u0129a c\u1ee7a c\u0103n th\u1ee9c<br\/> <b>B\u01b0\u1edbc 2:<\/b> Ph\u00e2n t\u00edch \u0111a th\u1ee9c th\u00e0nh nh\u00e2n t\u1eed <br\/><b>B\u01b0\u1edbc 3:<\/b> T\u00ecm $x$ <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><span class='basic_left'> \u0110i\u1ec1u ki\u1ec7n: $x\\ge 0$<br\/>$\\begin{aligned} &x-9\\sqrt{x}+14=0 \\\\ \\Leftrightarrow &x-2\\sqrt{x}-7\\sqrt{x}+14=0 \\\\ \\Leftrightarrow & \\sqrt{x} (\\sqrt{x} - 2) - 7(\\sqrt{x} - 2) = 0 \\\\ \\Leftrightarrow &\\left( \\sqrt{x}-2 \\right)\\left( \\sqrt{x}-7 \\right)=0 \\\\ \\end{aligned}$ <br\/>$\\Leftrightarrow \\left[ \\begin{aligned} & \\sqrt{x}=2 \\\\ & \\sqrt{x}=7 \\\\ \\end{aligned} \\right.$<br\/>$\\Leftrightarrow \\left[ \\begin{aligned} & x=4 \\\\ & x=49 \\\\ \\end{aligned} \\right.$ <br\/>V\u1eady ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 t\u1eadp nghi\u1ec7m $S=\\left\\{ 4;49\\right\\}$ <br\/><span class='basic_pink'>V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $4$ ho\u1eb7c $49$ <\/span><\/span>"}]}],"id_ques":507},{"time":24,"part":[{"title":"\u0110i\u1ec1n \u0111\u00e1p \u00e1n v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["-2"],["2"]]],"list":[{"point":10,"width":100,"type_input":"","ques":"Gi\u1ea3i b\u1ea5t ph\u01b0\u01a1ng tr\u00ecnh $\\sqrt{x+2}>x$ <br\/>\u0110\u00e1p \u00e1n: _input_$\\,<\\, x\\,<$_input_","hint":"X\u00e9t hai tr\u01b0\u1eddng h\u1ee3p $x<0$ v\u00e0 $x\\ge0$ \u0111\u1ec3 gi\u1ea3i b\u1ea5t ph\u01b0\u01a1ng tr\u00ecnh.","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> T\u00ecm \u0111i\u1ec1u ki\u1ec7n \u0111\u1ec1 b\u1ea5t ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 ngh\u0129a<br\/><b>B\u01b0\u1edbc 2:<\/b> X\u00e9t tr\u01b0\u1eddng h\u1ee3p $x<0$<br\/> <b>B\u01b0\u1edbc 3:<\/b> Gi\u1ea3i b\u1ea5t ph\u01b0\u01a1ng tr\u00ecnh v\u1edbi $x\\ge 0$<br\/><b>B\u01b0\u1edbc 4:<\/b> K\u1ebft lu\u1eadn t\u1eadp nghi\u1ec7m<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><span class='basic_left'>\u0110i\u1ec1u ki\u1ec7n: $x\\ge-2$<br\/>Tr\u01b0\u1eddng h\u1ee3p 1: V\u1edbi $x<0$<br\/>Ta c\u00f3:$\\sqrt{x+2}>x$<br\/>V\u00ec $\\sqrt{x+2}\\ge 0\\,\\,\\,\\forall x\\ge -2$ v\u00e0 $x<0$ n\u00ean $\\sqrt{x+2}>x \\,\\,\\,\\,$ v\u1edbi $-2 \\le x<0$<br\/>V\u1eady $-2\\le x<0.$<br\/>Tr\u01b0\u1eddng h\u1ee3p 2: V\u1edbi $x\\ge 0$<br\/>Ta c\u00f3:$\\sqrt{x+2}>x\\Leftrightarrow x+2>{{x}^{2}}$<br\/>$\\,\\Leftrightarrow {{x}^{2}}-x-2<0$<br\/>$\\,\\Leftrightarrow \\left( x-2 \\right)\\left( x+1 \\right)<0$ <br\/>+)$\\left\\{ \\begin{aligned} & x-2>0 \\\\ & x+1<0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & x>2 \\\\ & x<-1 \\\\ \\end{aligned} \\right.$ (lo\u1ea1i) <br\/>+)$\\left\\{ \\begin{aligned} & x-2<0 \\\\ & x+1>0 \\\\ \\end{aligned} \\right.$$\\Leftrightarrow \\left\\{ \\begin{aligned} & x<2 \\\\ & x>-1 \\\\ \\end{aligned} \\right.$$\\,\\Leftrightarrow -1 < x < 2$ <br\/>V\u1eady nghi\u1ec7m c\u1ee7a b\u1ea5t ph\u01b0\u01a1ng tr\u00ecnh l\u00e0: $-2 < x < 2$<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $-2$ v\u00e0 $2$ <\/span><br\/><i>Nh\u1eadn x\u00e9t:<\/i> V\u1edbi b\u00e0i to\u00e1n gi\u1ea3i b\u1ea5t ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 d\u1ea1ng: $\\sqrt{f(x)}>g(x)$, ta th\u1ef1c hi\u1ec7n:<br\/><b>B\u01b0\u1edbc 1:<\/b>T\u00ecm \u0111i\u1ec1u ki\u1ec7n x\u00e1c \u0111\u1ecbnh.<br\/><b>B\u01b0\u1edbc 2:<\/b> Gi\u1ea3i b\u1ea5t ph\u01b0\u01a1ng tr\u00ecnh v\u1edbi tr\u01b0\u1eddng h\u1ee3p $g(x)<0$.<br\/><b>B\u01b0\u1edbc 3:<\/b>Gi\u1ea3i b\u1ea5t ph\u01b0\u01a1ng tr\u00ecnh v\u1edbi tr\u01b0\u1eddng h\u1ee3p $g(x)\\ge0$.<br\/><b>B\u01b0\u1edbc 4:<\/b> K\u1ebft lu\u1eadn t\u1eadp nghi\u1ec7m <\/span>"}]}],"id_ques":508},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["1"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"Nh\u1eefng gi\u00e1 tr\u1ecb nguy\u00ean n\u00e0o c\u1ee7a $x$ \u0111\u1ec3 bi\u1ec3u th\u1ee9c $\\sqrt{\\dfrac{2x-1}{2-x}}$ c\u00f3 ngh\u0129a? <br\/> \u0110\u00e1p s\u1ed1: $x=$_input_","hint":"$\\sqrt{A}$ c\u00f3 ngh\u0129a $\\Leftrightarrow A \\ge 0$ ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> T\u00ecm \u0111i\u1ec1u ki\u1ec7n \u0111\u1ec3 $\\sqrt A$ c\u00f3 ngh\u0129a.<br\/><b>B\u01b0\u1edbc 2:<\/b> Gi\u1ea3i b\u1ea5t ph\u01b0\u01a1ng tr\u00ecnh.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><span class='basic_left'> \u0110i\u1ec1u ki\u1ec7n x\u00e1c \u0111\u1ecbnh:$\\dfrac{2x-1}{2-x}\\ge 0$ <br\/>Tr\u01b0\u1eddng h\u1ee3p 1: <br\/>$\\left\\{ \\begin{aligned} & 2x-1\\ge 0 \\\\ & 2-x>0 \\\\\\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & x\\ge \\dfrac{1}{2} \\\\ & x<2 \\\\ \\end{aligned} \\right.$$\\,\\Leftrightarrow \\dfrac{1}{2}\\le x<2$ <br\/>Tr\u01b0\u1eddng h\u1ee3p 2:<br\/>$\\left\\{ \\begin{aligned} & 2x-1 \\le 0 \\\\ & 2-x<0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & x \\le \\dfrac{1}{2} \\\\ & x>2 \\\\ \\end{aligned} \\right.$ (lo\u1ea1i)<br\/>V\u1eady v\u1edbi $\\dfrac{1}{2}\\le x<2$ th\u00ec bi\u1ec3u th\u1ee9c c\u00f3 ngh\u0129a<br\/>Khi \u0111\u00f3, gi\u00e1 tr\u1ecb nguy\u00ean c\u1ee7a $x$ t\u00ecm \u0111\u01b0\u1ee3c l\u00e0 $x=1$<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $1$<\/span><\/span>"}]}],"id_ques":509},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["1"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"T\u00ecm $x$ \u0111\u1ec3 bi\u1ec3u th\u1ee9c $\\sqrt{-{{x}^{2}}+2x-1}$ c\u00f3 ngh\u0129a. <br\/>\u0110\u00e1p s\u1ed1: $x=$_input_","hint":"$\\sqrt{A}$ c\u00f3 ngh\u0129a $\\Leftrightarrow A \\ge 0$ ","explain":"<span class='basic_left'>\u0110i\u1ec1u ki\u1ec7n x\u00e1c \u0111\u1ecbnh c\u1ee7a $\\sqrt{-{{x}^{2}}+2x-1}$ l\u00e0:<br\/>$-{{x}^{2}}+2x-1\\ge 0$<br\/>$\\,\\Leftrightarrow -{{\\left( x-1 \\right)}^{2}}\\ge 0$<br\/>$\\,\\Leftrightarrow {{\\left( x-1 \\right)}^{2}}\\le 0$ (1)<br\/>M\u00e0 ${{\\left( x-1 \\right)}^{2}}\\ge 0\\,\\,\\forall x$ (2)<br\/>T\u1eeb (1) v\u00e0 (2) suy ra $x-1=0\\Leftrightarrow x=1$ <br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n l\u00e0 $1$<\/span><\/span>"}]}],"id_ques":510}],"lesson":{"save":0,"level":3}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý