đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":10,"ques":" K\u1ebft qu\u1ea3 ph\u00e2n t\u00edch bi\u1ec3u th\u1ee9c $x-\\sqrt{xy}+4\\sqrt{x}-2\\sqrt{y}+4$ th\u00e0nh nh\u00e2n t\u1eed l\u00e0: ","select":["A. $\\left( \\sqrt{x}-2 \\right)\\left( \\sqrt{x}+2-\\sqrt{y} \\right)$","B. $\\left( \\sqrt{x}+2 \\right)\\left( \\sqrt{x}+2 -\\sqrt{y}\\right)$","C. $\\left( \\sqrt{x}+2 \\right)\\left( \\sqrt{x}+2 +\\sqrt{y}\\right)$","D. $\\left( \\sqrt{x}-2 \\right)\\left( \\sqrt{x}+2 +\\sqrt{y}\\right)$ "],"hint":"Ph\u00e2n t\u00edch \u0111a th\u1ee9c b\u1eb1ng ph\u01b0\u01a1ng ph\u00e1p nh\u00f3m h\u1ea1ng t\u1eed","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<br\/><\/span><b>B\u01b0\u1edbc 1:<\/b> Nh\u00f3m c\u00e1c h\u1ea1ng t\u1eed m\u1ed9t c\u00e1ch h\u1ee3p l\u00fd l\u00e0m xu\u1ea5t hi\u1ec7n nh\u00e2n t\u1eed chung <br\/><b>B\u01b0\u1edbc 2:<\/b> \u0110\u1eb7t nh\u00e2n t\u1eed chung <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Ta c\u00f3:<br\/>$\\begin{align} & \\,\\,\\,x-\\sqrt{xy}+4\\sqrt{x}-2\\sqrt{y}+4 \\\\ & =\\left( x+4\\sqrt{x}+4 \\right)-\\left( \\sqrt{xy}+2\\sqrt{y} \\right) \\\\ & ={{\\left( \\sqrt{x}+2 \\right)}^{2}}-\\sqrt{y}\\left( \\sqrt{x}+2 \\right) \\\\ & =\\left( \\sqrt{x}+2 \\right)\\left( \\sqrt{x}+2-\\sqrt{y} \\right) \\\\ \\end{align}$ <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 B <\/span> <\/span>","column":2}]}],"id_ques":601},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho hai c\u00e2u","temp":"fill_the_blank","correct":[[["0"],["9"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai4/lv3/img\/2.jpg' \/><\/center><span class='basic_left'>Cho bi\u1ec3u th\u1ee9c $\\,\\,P=\\dfrac{\\sqrt{x}+1}{\\sqrt{x}-3}$ <br\/><b> C\u00e2u 1: <\/b> \u0110i\u1ec1u ki\u1ec7n \u0111\u1ec3 $P$ c\u00f3 ngh\u0129a l\u00e0 $x\\ge$_input_ v\u00e0 $x\\ne$_input_<\/span>","hint":"\u0110i\u1ec1u ki\u1ec7n x\u00e1c \u0111\u1ecbnh c\u1ee7a bi\u1ec3u th\u1ee9c: Bi\u1ec3u th\u1ee9c trong c\u0103n ph\u1ea3i kh\u00f4ng \u00e2m v\u00e0 m\u1eabu ph\u1ea3i kh\u00e1c $0$","explain":"<span class='basic_left'>\u0110i\u1ec1u ki\u1ec7n x\u00e1c \u0111\u1ecbnh: <br\/> $\\left\\{ \\begin{aligned} & x\\ge 0 \\\\ & \\sqrt{x}-3\\ne 0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & x\\ge 0 \\\\ & x\\ne 9 \\\\ \\end{aligned} \\right.$ <br\/><span class='basic_pink'>V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $0$ v\u00e0 $9$<\/span><\/span>"}]}],"id_ques":602},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng ","title_trans":"\u0110\u1ec1 chung cho hai c\u00e2u","temp":"fill_the_blank_random","correct":[[["49"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":"<span class='basic_left'>Cho bi\u1ec3u th\u1ee9c $\\,\\,P=\\dfrac{\\sqrt{x}+1}{\\sqrt{x}-3}$ <br\/><b> C\u00e2u 2: <\/b>Gi\u00e1 tr\u1ecb nguy\u00ean l\u1edbn nh\u1ea5t c\u1ee7a $x$ \u0111\u1ec3 $P \\in \\mathbb Z$ l\u00e0 $x=$_input_<\/span>","hint":"Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c v\u1ec1 d\u1ea1ng $m+\\dfrac {n}{f(x)}$, trong \u0111\u00f3 $m,n \\in \\mathbb Z$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> T\u00ecm \u0111i\u1ec1u ki\u1ec7n x\u00e1c \u0111\u1ecbnh c\u1ee7a bi\u1ec3u th\u1ee9c.<br\/><b>B\u01b0\u1edbc 2:<\/b> Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c v\u1ec1 d\u1ea1ng $m+\\dfrac {n}{f(x)}$, trong \u0111\u00f3 $m,n \\in \\mathbb Z$<br\/><b>B\u01b0\u1edbc 3:<\/b> T\u00ecm $x$ \u0111\u1ec3 $P$ nguy\u00ean. <br\/><b>B\u01b0\u1edbc 4:<\/b> T\u00ecm $x$ nguy\u00ean l\u1edbn nh\u1ea5t v\u00e0 k\u1ebft lu\u1eadn.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><span class='basic_left'>V\u1edbi $x\\ge 0$ v\u00e0 $x \\ne 9$, ta c\u00f3: <br\/>Ta c\u00f3:<br\/>$P=\\dfrac{\\sqrt{x}+1}{\\sqrt{x}-3}=\\dfrac{\\sqrt{x}-3+3+1}{\\sqrt{x}-3}\\,$$=1+\\dfrac{4}{\\sqrt{x}-3}$<br\/>\u0110\u1ec3 $P$ nguy\u00ean th\u00ec $\\dfrac{4}{\\sqrt{x}-3}$ ph\u1ea3i c\u00f3 gi\u00e1 tr\u1ecb nguy\u00ean.<br\/> V\u1eady $\\sqrt{x}-3\\in \u01af(4)=\\{\\pm 1; \\pm2; \\pm 4\\}$ <br\/>Ta c\u00f3 b\u1ea3ng sau:<br\/><table> <tr> <th>$\\sqrt{x}-3$<\/th> <th>$-4$<\/th> <th>$-2$<\/th> <th>$-1$ <\/th> <th>$1$ <\/th> <th>$2$<\/th> <th>$4$<\/th> <\/tr> <tr> <td>$\\sqrt{x}$<\/td> <td>-1<\/td> <td>$1$<\/td> <td>$2$<\/td> <td>$4$<\/td> <td>$5$<\/td> <td>$7$<\/td> <\/tr> <tr> <td>$x$<\/td> <td> lo\u1ea1i <\/td> <td>$1$<\/td> <td>$4$<\/td> <td>$16$<\/td> <td>$25$<\/td> <td>$49$<\/td> <\/tr><\/table><br\/>V\u1eady gi\u00e1 tr\u1ecb l\u1edbn nh\u1ea5t c\u1ee7a $x$ t\u00ecm \u0111\u01b0\u1ee3c \u0111\u1ec3 $P$ nh\u1eadn gi\u00e1 tr\u1ecb nguy\u00ean l\u00e0 $x=49$ <br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $49$<\/span><\/span><\/span>"}]}],"id_ques":603},{"time":24,"part":[{"title":"\u0110i\u1ec1n bi\u1ec3u th\u1ee9c th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank_random","correct":[[["1-a","-a+1"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":"V\u1edbi $a\\ge 0;\\,\\,\\,a\\ne 1$ . R\u00fat g\u1ecdn bi\u1ec3u th\u1ee9c:<br\/> $\\left( 1+\\dfrac{a+\\sqrt{a}}{1+\\sqrt{a}} \\right)\\left( 1-\\dfrac{a-\\sqrt{a}}{\\sqrt{a}-1} \\right)=$_input_ ","hint":"","explain":"<span class='basic_left'>V\u1edbi $a\\ge 0;\\,\\,\\,a\\ne 1$, ta c\u00f3:<br\/>$ \\,\\,\\left( 1+\\dfrac{a+\\sqrt{a}}{1+\\sqrt{a}} \\right)\\left( 1-\\dfrac{a-\\sqrt{a}}{\\sqrt{a}-1} \\right) $<br\/>$ =\\left[ 1+\\dfrac{\\sqrt{a}\\left( \\sqrt{a}+1 \\right)}{\\sqrt{a}+1} \\right]$$\\left[ 1-\\dfrac{\\sqrt{a}\\left( \\sqrt{a}-1 \\right)}{\\sqrt{a}-1} \\right]$<br\/>$=\\left( 1+\\sqrt{a} \\right)\\left( 1-\\sqrt{a} \\right) $<br\/>$=1-a $ <br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $1-a$ <\/span><\/span>"}]}],"id_ques":604},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank_random","correct":[[["<"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop9/toan/daiso/bai4/lv3/img\/5.jpg' \/><\/center>$\\sqrt{15}-\\sqrt{13}$ _input_ $\\sqrt{13}-\\sqrt{11}$ ","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> Bi\u1ebfn \u0111\u1ed5i v\u1ec1 so s\u00e1nh $\\sqrt{15}+\\sqrt{13}$ v\u00e0 $\\sqrt{13}+\\sqrt{11}$ <br\/><b>B\u01b0\u1edbc 2:<\/b> So s\u00e1nh<\/span> <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><span class='basic_left'>Ta c\u00f3: $\\sqrt{15}-\\sqrt{13}\\,$$=\\dfrac{\\left( \\sqrt{15}-\\sqrt{13} \\right)\\left( \\sqrt{15}+\\sqrt{13} \\right)}{\\sqrt{15}+\\sqrt{13}}\\,$$=\\dfrac{(\\sqrt{15})^{2}-(\\sqrt{13})^{2}}{\\sqrt{15}+\\sqrt{13}}\\,$$=\\dfrac{2}{\\sqrt{15}+\\sqrt{13}}$<br\/>$\\sqrt{13}-\\sqrt{11}\\,$$=\\dfrac{\\left( \\sqrt{13}-\\sqrt{11} \\right)\\left( \\sqrt{13}+\\sqrt{11} \\right)}{\\sqrt{13}+\\sqrt{11}}\\,$$=\\dfrac{2}{\\sqrt{13}+\\sqrt{11}}$<br\/>V\u00ec $\\sqrt{15}+\\sqrt{13}>\\sqrt{13}+\\sqrt{11}\\,$$\\Rightarrow \\dfrac{2}{\\sqrt{15}+\\sqrt{13}}<\\dfrac{2}{\\sqrt{13}+\\sqrt{11}}\\,$$\\Rightarrow \\sqrt{15}-\\sqrt{13}<\\sqrt{13}-\\sqrt{11}$ <\/span> <br\/><span class='basic_pink'>V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n l\u00e0 $<$ <\/span> <\/span><\/span>"}]}],"id_ques":605},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"select":["A. $a-\\sqrt{a}$","B. $a+\\sqrt{a}$","C. $2a -\\sqrt{a}$"],"ques":"<span class='basic_left'>Cho bi\u1ec3u th\u1ee9c: $M=\\dfrac{{{a}^{2}}+\\sqrt{a}}{a-\\sqrt{a}+1}-\\dfrac{2a+\\sqrt{a}}{\\sqrt{a}}+1$<br\/>R\u00fat g\u1ecdn $M=$?<\/span> ","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> \u0110\u1eb7t \u0111i\u1ec1u ki\u1ec7n \u0111\u1ec3 bi\u1ec3u th\u1ee9c c\u00f3 ngh\u0129a<br\/><b>B\u01b0\u1edbc 2:<\/b>R\u00fat g\u1ecdn t\u1eebng ph\u00e2n th\u1ee9c trong bi\u1ec3u th\u1ee9c b\u1eb1ng c\u00e1ch ph\u00e2n t\u00edch t\u1eed th\u1ee9c th\u00e0nh nh\u00e2n t\u1eed.<br\/><b>B\u01b0\u1edbc 3:<\/b> S\u1eed d\u1ee5ng h\u1eb1ng \u0111\u1eb3ng th\u1ee9c $A^3 \\pm B^3$<br\/><b>B\u01b0\u1edbc 4:<\/b> R\u00fat g\u1ecdn <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> \u0110i\u1ec1u ki\u1ec7n: $a > 0$<br\/>Ta c\u00f3:<br\/>$M=\\dfrac{{{a}^{2}}+\\sqrt{a}}{a-\\sqrt{a}+1}-\\dfrac{2a+\\sqrt{a}}{\\sqrt{a}}+1$ <br\/> $=\\dfrac{(\\sqrt{a})^{4}+\\sqrt{a}}{a-\\sqrt{a}+1}\\,$$-\\dfrac{2(\\sqrt{a})^{2}+\\sqrt{a}}{\\sqrt{a}}+1$<br\/>$=\\dfrac{\\sqrt{a}\\left[(\\sqrt{a})^{3}+1 \\right]}{a-\\sqrt{a}+1}\\,$$-\\dfrac{\\sqrt{a}\\left( 2\\sqrt{a}+1 \\right)}{\\sqrt{a}}+1 $<br\/>$=\\sqrt{a}\\left( \\sqrt{a}+1 \\right)-\\left( 2\\sqrt{a}+1 \\right)+1 $<br\/>$=a+\\sqrt{a}-2\\sqrt{a}-1+1$<br\/>$=a-\\sqrt{a}$<\/span>"}]}],"id_ques":606},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u","temp":"fill_the_blank","correct":[[["="]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":"<span class='basic_left'>Cho bi\u1ec3u th\u1ee9c: $M=\\dfrac{{{a}^{2}}+\\sqrt{a}}{a-\\sqrt{a}+1}-\\dfrac{2a+\\sqrt{a}}{\\sqrt{a}}+1$<br\/><b> C\u00e2u 2:<\/b> V\u1edbi $a > 1$, so s\u00e1nh $M$ v\u00e0 $|M|$<br\/><b>\u0110\u00e1p \u00e1n:<\/b> $M$ _input_ $|M|$<\/span>","hint":"So s\u00e1nh $M$ v\u1edbi $0$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> Ch\u1ee9ng minh $M > 0$ <br\/><b>B\u01b0\u1edbc 2:<\/b> \u00c1p d\u1ee5ng: $\\left| a \\right|=\\left\\{ \\begin{align} & \\begin{matrix} \\,\\,\\,a & n\u1ebfu\\,\\,\\, a\\ge0 \\\\\\end{matrix} \\\\ & \\begin{matrix} -a & n\u1ebfu \\,\\,\\,a < 0 \\\\\\end{matrix} \\\\ \\end{align} \\right.$ <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> Theo c\u00e2u tr\u00ean, ta c\u00f3: $M=a-\\sqrt{a}$<br\/>Ta c\u00f3:<br\/> $M=a-\\sqrt{a}=\\sqrt{a}\\left( \\sqrt{a}-1 \\right)$<br\/>M\u00e0 $a > 1 \\Rightarrow \\sqrt{a}-1>0$<br\/>$\\Rightarrow \\sqrt{a}\\left( \\sqrt{a}-1 \\right)>0\\Rightarrow M>0$<br\/>Do \u0111\u00f3 $|M|=M$<br\/><span class='basic_pink'>V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $=$<\/span><\/span>"}]}],"id_ques":607},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho b\u1ed1n c\u00e2u","temp":"fill_the_blank","correct":[[["4"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":"<span class='basic_left'>Cho bi\u1ec3u th\u1ee9c: $\\,\\,\\,M=\\dfrac{{{a}^{2}}+\\sqrt{a}}{a-\\sqrt{a}+1}-\\dfrac{2a+\\sqrt{a}}{\\sqrt{a}}+1$<br\/><b> C\u00e2u 3: <\/b>\u0110\u1ec3 $M= 2$ th\u00ec $a =$ _input_ ","hint":"Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh $M=2$ \u0111\u1ec3 t\u00ecm $a$<\/span>","explain":"<span class='basic_left'> V\u1edbi $a>0$, $M=a-\\sqrt{a}$<br\/>Ta c\u00f3: <br\/>$M= 2$<br\/>$ \\Leftrightarrow a-\\sqrt{a}=2$<br\/>$\\Leftrightarrow a-\\sqrt{a}-2=0$<br\/> $\\Leftrightarrow a+\\sqrt{a} - 2\\sqrt{a}-2=0$<br\/> $\\Leftrightarrow \\sqrt{a} (\\sqrt{a} + 1) - 2(\\sqrt{a} + 1)=0$<br\/>$\\Leftrightarrow \\left( \\sqrt{a}+1 \\right)\\left( \\sqrt{a}-2 \\right)=0$<br\/>$\\Leftrightarrow \\left[ \\begin{aligned} & \\sqrt{a}=-1\\,\\,\\,\\,\\,\\, \\text{(lo\u1ea1i)} \\\\ & \\sqrt{a}=2 \\\\ \\end{aligned} \\right.$ <br\/> $\\Leftrightarrow a=4$ (th\u1ecfa m\u00e3n)<br\/>Do \u0111\u00f3 v\u1edbi $M = 2$ th\u00ec $a=4$ <br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $4$ <\/span><\/span>"}]}],"id_ques":608},{"time":24,"part":[{"title":"Ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"select":["A. $M_{min} =-\\dfrac{1}{3}$ khi $a = \\dfrac{1}{4}$","B. $M_{min} =-\\dfrac{1}{4}$ khi $a = \\dfrac{1}{4}$","C. $M_{min} =-\\dfrac{1}{4}$ khi $a = \\dfrac{1}{2}$"],"ques":"<span class='basic_left'>Cho bi\u1ec3u th\u1ee9c: $M=\\dfrac{{{a}^{2}}+\\sqrt{a}}{a-\\sqrt{a}+1}-\\dfrac{2a+\\sqrt{a}}{\\sqrt{a}}+1$<br\/><b> C\u00e2u 4: <\/b>Gi\u00e1 tr\u1ecb nh\u1ecf nh\u1ea5t c\u1ee7a $M=$?khi $a=$?<\/span>","hint":"Bi\u1ebfn \u0111\u1ed5i bi\u1ec3u th\u1ee9c $M$ v\u1ec1 d\u1ea1ng: ${f(x)}^2+a$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> \u0110\u01b0a bi\u1ec3u th\u1ee9c v\u1ec1 d\u1ea1ng ${{\\left[ f\\left( x \\right) \\right]}^{2}}+a$<br\/><b>B\u01b0\u1edbc 2:<\/b> \u0110\u00e1nh gi\u00e1 v\u00e0 x\u00e1c \u0111\u1ecbnh gi\u00e1 tr\u1ecb nh\u1ecf nh\u1ea5t c\u1ee7a $M$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><span class='basic_left'>V\u1edbi $a>0$. Ta c\u00f3: <br\/>$M=a-\\sqrt{a}\\,$ <br\/> $={{\\left( \\sqrt{a} \\right)}^{2}}-\\sqrt{a}$ <br\/> $ ={{\\left( \\sqrt{a} \\right)}^{2}}-2.\\sqrt{a}.\\dfrac{1}{2}+{{\\left( \\dfrac{1}{2} \\right)}^{2}}-{{\\left( \\dfrac{1}{2} \\right)}^{2}}$ <br\/> $={{\\left( \\sqrt{a}-\\dfrac{1}{2} \\right)}^{2}}-\\dfrac{1}{4}\\ge -\\dfrac{1}{4}$ v\u1edbi m\u1ecdi $a$ <br\/>$\\Rightarrow{{M}_{\\min }}=-\\dfrac{1}{4}\\Leftrightarrow \\sqrt{a}-\\dfrac{1}{2}=0\\,$$\\Leftrightarrow \\sqrt{a}=\\dfrac{1}{2}\\Leftrightarrow a=\\dfrac{1}{4}$<br\/><\/span><\/span>"}]}],"id_ques":609},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank_random","correct":[[["2","-2"],["-2","2"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":"Gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh:<br\/> $\\sqrt{9{{x}^{2}}+45}-\\dfrac{1}{12}\\sqrt{16{{x}^{2}}+80}\\,$$+3\\sqrt{\\dfrac{{{x}^{2}}+5}{16}}\\,$$-\\dfrac{1}{4}\\sqrt{\\dfrac{25{{x}^{2}}+125}{9}}=9$ <br\/>T\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh l\u00e0 $S=${_input_ ;_input_} ","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> T\u00ecm \u0111i\u1ec1u ki\u1ec7n \u0111\u1ec3 ph\u01b0\u01a1ng tr\u00ecnh c\u00f3 ngh\u0129a.<br\/><b>B\u01b0\u1edbc 2:<\/b> \u00c1p d\u1ee5ng: Quy t\u1eafc \u0111\u01b0a th\u1eeba s\u1ed1 ra ngo\u00e0i d\u1ea5u c\u0103n: $\\sqrt{A^2B}=|A|\\sqrt{B}$<br\/><b>B\u01b0\u1edbc 3:<\/b> R\u00fat g\u1ecdn bi\u1ec3u th\u1ee9c <br\/><b>B\u01b0\u1edbc 4:<\/b> B\u00ecnh ph\u01b0\u01a1ng hai v\u1ebf r\u1ed3i t\u00ecm nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><span class='basic_left'>\u0110i\u1ec1u ki\u1ec7n: $x\\in \\mathbb{R}$ <br\/> Ta c\u00f3:<br\/> $\\sqrt{9{{x}^{2}}+45}-\\dfrac{1}{12}\\sqrt{16{{x}^{2}}+80}\\,$$+3\\sqrt{\\dfrac{{{x}^{2}}+5}{16}}\\,$$-\\dfrac{1}{4}\\sqrt{\\dfrac{25{{x}^{2}}+125}{9}}=9$<br\/>$\\Leftrightarrow \\sqrt{9({{x}^{2}}+5)}-\\dfrac{1}{12}\\sqrt{16({{x}^{2}}+5)}\\,$$+\\dfrac{3}{4}\\sqrt{{{x}^{2}}+5}\\,$$-\\dfrac{1}{4}.\\dfrac{1}{3}\\sqrt{25({{x}^{2}}+5)}=9$<br\/>$\\Leftrightarrow 3\\sqrt{{{x}^{2}}+5}-\\dfrac{1}{3}\\sqrt{{{x}^{2}}+5}\\,$$+\\dfrac{3}{4}\\sqrt{{{x}^{2}}+5}\\,$$-\\dfrac{5}{12}\\sqrt{{{x}^{2}}+5}=9$<br\/>$\\begin{aligned} & \\Leftrightarrow 3\\sqrt{{{x}^{2}}+5}=9 \\\\ & \\Leftrightarrow \\sqrt{{{x}^{2}}+5}=3 \\\\ & \\Leftrightarrow {{x}^{2}}+5=9 \\\\ & \\Leftrightarrow {{x}^{2}}=4 \\\\ & \\Leftrightarrow x=\\pm 2 \\\\ \\end{aligned}$<br\/>T\u1eadp nghi\u1ec7m c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh l\u00e0 $S=\\{2; -2\\}$ <br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $2$ v\u00e0 $-2$ <\/span> <\/span><\/span>"}]}],"id_ques":610}],"lesson":{"save":0,"level":3}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý