đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" Trong tam gi\u00e1c, \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a m\u1ed9t g\u00f3c chia c\u1ea1nh \u0111\u1ed1i di\u1ec7n th\u00e0nh hai \u0111o\u1ea1n th\u1eb3ng t\u1ec9 l\u1ec7 v\u1edbi hai c\u1ea1nh k\u1ec1 hai \u0111o\u1ea1n \u1ea5y. <b>\u0110\u00fang<\/b> hay <b>Sai<\/b>? ","select":[" A. \u0110\u00fang"," B. Sai"],"explain":" \u0110\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>A. \u0110\u00fang<\/span>","column":2}]}],"id_ques":1681},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" <span class='basic_left'>Cho h\u00ecnh v\u1ebd nh\u01b0 sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D101.png' \/><\/center><br\/><b>H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t<\/b><\/span>","select":[" A. $\\dfrac{DB}{DC} = \\dfrac{AB}{AC}$"," B. $\\dfrac{DB}{DC} = \\dfrac{AC}{AB}$","C. $\\dfrac{DB}{BC} = \\dfrac{AB}{AC}$","D. $\\dfrac{DC}{BC} = \\dfrac{AB}{AC}$"],"explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D101.png' \/><\/center><br\/> $\\triangle ABC$ c\u00f3: $AD$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{BAC}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{DB}{DC} = \\dfrac{AB}{AC}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> A. $\\dfrac{DB}{DC} = \\dfrac{AB}{AC}$<\/span>","column":2}]}],"id_ques":1682},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":" <span class='basic_left'>Cho h\u00ecnh v\u1ebd nh\u01b0 sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D102.png' \/><\/center><br\/>T\u00ednh $\\dfrac{x}{y}$<\/span>","select":[" A. $\\dfrac{x}{y} = \\dfrac{7}{5}$"," B. $\\dfrac{x}{y} = \\dfrac{5}{7}$","C. $\\dfrac{x}{y} = \\dfrac{5}{12}$","D. $\\dfrac{x}{y} = \\dfrac{7}{12}$"],"explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D102.png' \/><\/center><br\/> $\\triangle ABC$ c\u00f3:<br\/> $AD$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{BAC}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{DB}{DC} = \\dfrac{AB}{AC}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{x}{y} = \\dfrac{5}{7}$ <br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> B. $\\dfrac{x}{y} = \\dfrac{5}{7}$<\/span>","column":2}]}],"id_ques":1683},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":" <span class='basic_left'>T\u00ednh $x$ trong h\u00ecnh v\u1ebd sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D103.png' \/><\/center><br\/><\/span>","select":[" A. $x = 1,67$"," B. $x = 3,6$","C. $x = 4,5$","D. $x = 5,4$"],"explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D103.png' \/><\/center><br\/> $\\triangle MNP$ c\u00f3:<br\/> $NH$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{MNP}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{NM}{NP} = \\dfrac{HM}{HP}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{5}{9} = \\dfrac{3}{x}$<br\/> $\\Rightarrow x = \\dfrac{3.9}{5} = 5,4$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> D. $x = 5,4$<\/span>","column":2}]}],"id_ques":1684},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["12"]]],"list":[{"point":5,"width":50,"content":"","type_input":"","ques":"T\u00ednh $x$ trong h\u00ecnh v\u1ebd sau, bi\u1ebft $DH$ l\u00e0 \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a $\\triangle DEF$ ($H \\in EF$). <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D104.png' \/><\/center><br\/><b>\u0110\u00e1p \u00e1n:<\/b> $x$ = _input_ ($cm$)","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> \u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c \u0111\u1ec3 t\u00ednh $EH$<br\/><b>B\u01b0\u1edbc 2:<\/b> T\u00ednh $x$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D104.png' \/><\/center><br\/> $\\triangle DEF$ c\u00f3:<br\/> $DH$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{EDF}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{DE}{DF} = \\dfrac{HE}{HF}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{6}{9} = \\dfrac{HE}{7,2}$<br\/>$\\Rightarrow HE = \\dfrac{6.7,2}{9} = 4,8 \\text{(cm)}$<br\/>L\u1ea1i c\u00f3: $EF = HE + HF = 4,8 + 7,2 = 12 \\text{(cm)}$<br\/>Hay $x = 12cm$<br\/>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 <span class='basic_pink'>12<\/span>"}]}],"id_ques":1685},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":" <span class='basic_left'>Cho h\u00ecnh v\u1ebd nh\u01b0 sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D102.png' \/><\/center><br\/>T\u00ednh $\\dfrac{x}{y}$<\/span>","select":[" A. $\\dfrac{x}{y} = \\dfrac{2}{5}$"," B. $\\dfrac{x}{y} = \\dfrac{5}{2}$","C. $\\dfrac{x}{y} = \\dfrac{5}{7}$","D. $\\dfrac{x}{y} = \\dfrac{2}{7}$"],"explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D102.png' \/><\/center><br\/> $\\triangle ABC$ c\u00f3:<br\/> $AD$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{BAC}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{DB}{DC} = \\dfrac{AB}{AC}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{x}{y} = \\dfrac{5}{7}$ <br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> C. $\\dfrac{x}{y} = \\dfrac{5}{7}$<\/span>","column":2}]}],"id_ques":1686},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":" <span class='basic_left'>Tam gi\u00e1c $ABC$ c\u00f3 $AB = 15cm, AC = 25cm, BC = 32cm$. \u0110\u01b0\u1eddng ph\u00e2n gi\u00e1c g\u00f3c $BAC$ c\u1eaft c\u1ea1nh $BC$ t\u1ea1i $D$. T\u00ednh \u0111\u1ed9 d\u00e0i c\u00e1c \u0111o\u1ea1n th\u1eb3ng $DB$ v\u00e0 $DC$<\/span>","select":[" A. $DB = 19,2cm; DC = 12,8cm$"," B. $DB = 12,8cm; DC = 19,2cm$","C. $DB = 12cm; DC = 20cm$","D. $DB = 20cm; DC = 12cm$"],"explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D106.png' \/><\/center><br\/> $\\triangle ABC$ c\u00f3:<br\/> $AD$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{BAC}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{DB}{DC} = \\dfrac{AB}{AC}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{DB}{DC} = \\dfrac{15}{25} = \\dfrac{3}{5}$<br\/> $\\Rightarrow \\dfrac{DB}{DB + DC} = \\dfrac{3}{3 + 5} = \\dfrac{3}{8}$ hay $\\dfrac{DB}{BC} = \\dfrac{3}{8}$<br\/> $\\Rightarrow DB = \\dfrac{3. BC}{8} = \\dfrac{3. 32}{8} = 12 \\text{(cm)}$<br\/>L\u1ea1i c\u00f3: $DB + DC = BC$<br\/>$\\Rightarrow DC = BC - DB = 32 - 12 = 20 \\text{(cm)}$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> C. $DB = 12cm; DC = 20cm$<\/span>","column":2}]}],"id_ques":1687},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" <span class='basic_left'>Tam gi\u00e1c $MNP$ c\u00f3 $MN = 16cm, MP = 20cm, NP = 27cm$. \u0110\u01b0\u1eddng ph\u00e2n gi\u00e1c g\u00f3c $NMP$ c\u1eaft c\u1ea1nh $NP$ t\u1ea1i $H$. T\u00ednh \u0111\u1ed9 d\u00e0i c\u00e1c \u0111o\u1ea1n th\u1eb3ng $HN$ v\u00e0 $HP$<\/span>","select":[" A. $HN = 12cm; HP = 15cm$"," B. $HN = 15cm; HP = 12cm$","C. $HN = 10cm; HP = 17cm$","D. $HN = 13cm; HP = 14cm$"],"explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D107.png' \/><\/center><br\/> $\\triangle MNP$ c\u00f3:<br\/> $MH$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{NMP}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{HN}{HP} = \\dfrac{MN}{MP}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{HN}{HP} = \\dfrac{16}{20} = \\dfrac{4}{5}$<br\/> $\\Rightarrow \\dfrac{HN}{HN + HP} = \\dfrac{4}{4 + 5} = \\dfrac{4}{9}$ hay $\\dfrac{HN}{NP} = \\dfrac{4}{9}$<br\/> $\\Rightarrow HN = \\dfrac{4. NP}{9} = \\dfrac{4.27}{9} = 12 \\text{(cm)}$<br\/>L\u1ea1i c\u00f3: $HN + HP = NP$<br\/>$\\Rightarrow HP = NP - HN = 27 - 12 = 15 \\text{(cm)}$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> A. $HN = 12cm; HP = 15cm$<\/span>","column":2}]}],"id_ques":1688},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":" <span class='basic_left'>T\u00ednh \u0111\u1ed9 d\u00e0i c\u1ea1nh $AB$ v\u00e0 $AC$ trong h\u00ecnh v\u1ebd sau: <br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D108.png' \/><\/center><\/span>","select":[" A. $AC = 18cm, AB = 24cm$"," B. $AC = 33cm, AB = 25cm$","C. $AC = 25,2cm, AB = 33,6cm$","D. $AC = 33,6cm, AB = 25,2cm$"],"explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D108.png' \/><\/center><br\/>$\\triangle ABC$ vu\u00f4ng t\u1ea1i $A$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow AB^2 + AC^2 = BC^2$ ( \u0111\u1ecbnh l\u00ed Py-ta-go)<br\/> $\\Rightarrow AB^2 + AC^2 = (DB + DC)^2 = (18 + 24)^2 = 42^2 = 1764$<br\/> $\\triangle ABC$ c\u00f3:<br\/> $AD$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{BAC}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{AB}{AC} = \\dfrac{DB}{DC}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{AB}{AC} = \\dfrac{18}{24} = \\dfrac{3}{4}$<br\/> $\\Rightarrow \\dfrac{AB}{3} = \\dfrac{AC}{4 }$<br\/> $\\Rightarrow \\dfrac{AB^2}{9} = \\dfrac{AC^2}{16}$<br\/>\u00c1p d\u1ee5ng t\u00ednh ch\u1ea5t d\u00e3y t\u1ec9 s\u1ed1 b\u1eb1ng nhau ta c\u00f3:<br\/>$\\dfrac{AB^2}{9} = \\dfrac{AC^2}{16} = \\dfrac{AB^2 + AC^2}{9 + 16} = \\dfrac{1764}{25} = 70,56$ <br\/>$\\Rightarrow$ $\\begin{cases}AC^2 = 16.70,56 = 1128,96\\\\ AB^2 = 9. 70,56 = 635,04\\end{cases}$<br\/>$\\Rightarrow$ $\\begin{cases}AC = 33,6 \\text{(cm)} \\\\ AB = 25,2 \\text{(cm)} \\end{cases}$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> D. $AC = 33,6cm, AB = 25,2cm$<\/span>","column":2}]}],"id_ques":1689},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":" <span class='basic_left'>Cho tam gi\u00e1c $ABC$ vu\u00f4ng c\u00e2n t\u1ea1i $A$, \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c $BD$. T\u00ednh \u0111\u1ed9 d\u00e0i $AD, DC$ bi\u1ebft $AB = 10cm$.<\/span>","select":[" A. $AD = \\dfrac{10}{2 + \\sqrt{2}} \\text{(cm)}, DC = \\dfrac{10 \\sqrt{2}}{2 + \\sqrt{2}} \\text{cm}$"," B. $AD = \\dfrac{1}{1 + \\sqrt{2}} \\text{(cm)}, DC = \\dfrac{\\sqrt{2}}{1 + \\sqrt{2}} \\text{cm}$","C. $AD = \\dfrac{1}{1 + \\sqrt{2}} \\text{(cm)}, DC = \\dfrac{10 \\sqrt{2}}{1 + \\sqrt{2}} \\text{cm}$","D. $AD = \\dfrac{10}{1 + \\sqrt{2}} \\text{(cm)}, DC = \\dfrac{10 \\sqrt{2}}{1 + \\sqrt{2}} \\text{cm}$"],"hint":"S\u1eed d\u1ee5ng \u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D109.png' \/><\/center><br\/>$\\triangle ABC$ vu\u00f4ng c\u00e2n t\u1ea1i $A$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow$ $\\begin{cases}AB^2 + AC^2 = BC^2 \\text{(\u0111\u1ecbnh l\u00ed py-ta-go)}\\\\ AB = AC = 10 \\text{cm} \\text{(t\u00ednh ch\u1ea5t tam gi\u00e1c c\u00e2n)}\\end{cases}$<br\/>$\\Rightarrow BC^2 = 10^2 + 10^2 = 200$<br\/>$\\Rightarrow BC = 10 \\sqrt{2}$ <br\/> $\\triangle ABC$ c\u00f3:<br\/> $BD$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{ABC}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{AD}{DC} = \\dfrac{AB}{BC}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{AD}{DC} = \\dfrac{10}{10 \\sqrt{2}} = \\dfrac{1}{\\sqrt{2}}$<br\/>$\\Rightarrow \\dfrac{AD}{1} = \\dfrac{DC}{\\sqrt{2}} = \\dfrac{AD + DC}{1 + \\sqrt{2}} = \\dfrac{AC}{1 + \\sqrt{2}} = \\dfrac{10}{1 + \\sqrt{2}}$ (t\u00ednh ch\u1ea5t d\u00e3y t\u1ec9 s\u1ed1 b\u1eb1ng nhau)<br\/> $\\Rightarrow \\begin{cases}AD = \\dfrac{10}{1 + \\sqrt{2}}\\text{(cm)}\\\\ DC = \\dfrac{10 \\sqrt{2}}{1 + \\sqrt{2}} \\text{cm}\\end{cases}$ <br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> D. $AD = \\dfrac{10}{1 + \\sqrt{2}} \\text{(cm)}, DC = \\dfrac{10 \\sqrt{2}}{1 + \\sqrt{2}} \\text{cm}$<\/span>","column":2}]}],"id_ques":1690},{"time":24,"part":[{"title":"Ch\u1ecdn <u>nh\u1eefng<\/u> \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"Ch\u1ecdn \u0111\u01b0\u1ee3c nhi\u1ec1u \u0111\u00e1p \u00e1n","temp":"checkbox","correct":[["1","2","3"]],"list":[{"point":5,"img":"","ques":"<span class='basic_left'>Cho tam gi\u00e1c $ABC$ vu\u00f4ng t\u1ea1i $A$, \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c $AD$. Bi\u1ebft $DB = 12cm, DC = 18cm$.<br\/><b>H\u00e3y ch\u1ecdn nh\u1eefng \u0111\u00e1p \u00e1n \u0111\u00fang<\/b><\/span>","hint":"","column":2,"number_true":2,"select":["A. $AC \\approx 25 cm$","B. $AB = 16,6 cm$","C. $\\dfrac{AB}{AC} = \\dfrac{2}{3}$","D. $\\dfrac{AC}{AB} = \\dfrac{DB}{DC}$"],"explain":"<span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D110.png' \/><\/center><br\/>$\\triangle ABC$ vu\u00f4ng t\u1ea1i $A$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow AB^2 + AC^2 = BC^2$ ( \u0111\u1ecbnh l\u00ed Py-ta-go)<br\/> $\\Rightarrow AB^2 + AC^2 = (DB + DC)^2 = (12 + 18)^2 = 30^2 = 900$<br\/> $\\triangle ABC$ c\u00f3:<br\/> $AD$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{BAC}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{AB}{AC} = \\dfrac{DB}{DC}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{AB}{AC} = \\dfrac{12}{18} = \\dfrac{2}{3}$<br\/> $\\Rightarrow \\dfrac{AB}{2} = \\dfrac{AC}{3 }$<br\/> $\\Rightarrow \\dfrac{AB^2}{4} = \\dfrac{AC^2}{9}$<br\/>\u00c1p d\u1ee5ng t\u00ednh ch\u1ea5t d\u00e3y t\u1ec9 s\u1ed1 b\u1eb1ng nhau ta c\u00f3:<br\/>$\\dfrac{AB^2}{4} = \\dfrac{AC^2}{9} = \\dfrac{AB^2 + AC^2}{4 + 9} = \\dfrac{900}{13} $ <br\/>$\\Rightarrow$ $\\begin{cases}AC^2 = \\dfrac{900. 9}{13} = \\dfrac{8100}{13}\\\\ AB^2 = \\dfrac{900. 4}{13} = \\dfrac{3600}{13}\\end{cases}$<br\/>$\\Rightarrow$ $\\begin{cases}AC \\approx 25 \\text{(cm)} \\\\ AB = 16,6 \\text{(cm)} \\end{cases}$<br\/>V\u1eady nh\u1eefng \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> A, B v\u00e0 C<\/span><br\/><span class='basic_left'><span class='basic_green'>Ph\u01b0\u01a1ng ph\u00e1p gi\u1ea3i:<\/span><br\/>+ \u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00ed Py-ta-go \u0111\u1ec3 \u0111\u01b0\u1ee3c: $AB^2 + AC^2 = m^2$ ($m$ l\u00e0 h\u1eb1ng s\u1ed1)<br\/>+ S\u1eed d\u1ee5ng t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c trong tam gi\u00e1c l\u00e0m xu\u1ea5t hi\u1ec7n t\u1ec9 l\u1ec7 th\u1ee9c $\\dfrac{AB}{AC} = \\dfrac{a}{b}$ ($a + b = m$, $a, b$ l\u00e0 c\u00e1c h\u1eb1ng s\u1ed1) t\u1eeb \u0111\u00f3 bi\u1ec3n \u0111\u1ed5i \u0111\u1ec3 xu\u1ea5t hi\u1ec7n t\u1ec9 l\u1ec7 th\u1ee9c c\u00f3 d\u1ea1ng $\\dfrac{AB^2}{a^2} = \\dfrac{AC^2}{b^2}$<br\/>+ \u00c1p d\u1ee5ng t\u00ednh ch\u1ea5t d\u00e3y t\u1ec9 s\u1ed1 b\u1eb1ng nhau \u0111\u1ec3 t\u00ednh $AB^2, AC^2$ t\u1eeb \u0111\u00f3 suy ra $AB, AC$.<\/span> <br\/><br\/> "}]}],"id_ques":1691},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["3"],["4"]]],"list":[{"point":5,"width":50,"content":"","type_input":"","ques":"<span class='basic_left'>Cho h\u00ecnh v\u1ebd sau, bi\u1ebft $AD$ l\u00e0 ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{BAC}$<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D111.png' \/><\/center><br\/><b>T\u1ec9 s\u1ed1 di\u1ec7n t\u00edch $\\triangle ABD$ v\u00e0 $\\triangle ACD$ l\u00e0:<\/b> $\\dfrac{\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}}{\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}}$<\/span>","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> \u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c \u0111\u1ec3 t\u00ednh t\u1ec9 s\u1ed1 $DB$ v\u00e0 $DC$ <br\/><b>B\u01b0\u1edbc 2:<\/b> T\u1eeb t\u1ec9 s\u1ed1 $DB$ v\u00e0 $DC$ t\u00ecm \u0111\u01b0\u1ee3c t\u1ec9 s\u1ed1 di\u1ec7n t\u00edch $\\triangle{ABD}$ v\u00e0 $\\triangle{ACD}$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D111.png' \/><\/center><br\/> $\\triangle{ABC}$ c\u00f3:<br\/> $AD$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{BAC}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{DB}{DC} = \\dfrac{AB}{AC}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{DB}{DC} = \\dfrac{3}{4}$<br\/>L\u1ea1i c\u00f3: $\\dfrac{ S_{ \\triangle{ABD}}}{S_{ \\triangle{ACD}}} = \\dfrac{\\dfrac{AH.BD}{2}}{\\dfrac{AH.CD}{2}} = \\dfrac{BD}{CD} = \\dfrac{3}{4}$<br\/>V\u1eady c\u00e1c s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u1ea7n l\u01b0\u1ee3t l\u00e0 <span class='basic_pink'>3; 4<\/span><br\/><span class='basic_left'><span class='basic_green'>Nh\u1eadn x\u00e9t:<\/span> Hai tam gi\u00e1c c\u00f3 chung \u0111\u01b0\u1eddng cao th\u00ec t\u1ec9 l\u1ec7 hai tam gi\u00e1c \u0111\u00f3 b\u1eb1ng t\u1ec9 l\u1ec7 hai c\u1ea1nh \u0111\u00e1y t\u01b0\u01a1ng \u1ee9ng.<\/span>"}]}],"id_ques":1692},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["4"],["7"]]],"list":[{"point":5,"width":50,"content":"","type_input":"","ques":"<span class='basic_left'>Cho h\u00ecnh v\u1ebd sau, bi\u1ebft $DH$ l\u00e0 ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{EDF}$<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D112.png' \/><\/center><br\/>T\u1ec9 s\u1ed1 di\u1ec7n t\u00edch $\\triangle{DEH}$ v\u00e0 $\\triangle{DFH}$ l\u00e0: $\\dfrac{\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}}{\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}}$<\/span>","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> \u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c \u0111\u1ec3 t\u00ednh t\u1ec9 s\u1ed1 $HE$ v\u00e0 $HF$ <br\/><b>B\u01b0\u1edbc 2:<\/b> T\u1eeb t\u1ec9 s\u1ed1 $HE$ v\u00e0 $HF$ t\u00ecm \u0111\u01b0\u1ee3c t\u1ec9 s\u1ed1 di\u1ec7n t\u00edch $\\triangle{DEH}$ v\u00e0 $\\triangle{DFH}$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D112.png' \/><\/center><br\/> $\\triangle{DEF}$ c\u00f3:<br\/> $DH$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{EDF}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{HE}{HF} = \\dfrac{DE}{DF}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{HE}{HF} = \\dfrac{4}{7}$<br\/>L\u1ea1i c\u00f3: $\\dfrac{ S_{ \\triangle{DEH}}}{S_{ \\triangle{DHF}}} = \\dfrac{\\dfrac{DK.HE}{2}}{\\dfrac{DK.HF}{2}} = \\dfrac{HE}{HF} = \\dfrac{4}{7}$<br\/>V\u1eady c\u00e1c s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u1ea7n l\u01b0\u1ee3t l\u00e0 <span class='basic_pink'>4; 7<\/span><br\/><span class='basic_left'><span class='basic_green'>Nh\u1eadn x\u00e9t:<\/span> Hai tam gi\u00e1c c\u00f3 chung \u0111\u01b0\u1eddng cao th\u00ec t\u1ec9 l\u1ec7 di\u1ec7n t\u00edch hai tam gi\u00e1c \u0111\u00f3 b\u1eb1ng t\u1ec9 l\u1ec7 hai c\u1ea1nh \u0111\u00e1y t\u01b0\u01a1ng \u1ee9ng.<\/span>"}]}],"id_ques":1693},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":" <span class='basic_left'>T\u00ednh \u0111\u1ed9 d\u00e0i c\u1ea1nh $DM$ trong h\u00ecnh v\u1ebd sau: <br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D113.png' \/><\/center><\/span>","select":[" A. $DM = 8cm$"," B. $DM = 10cm$","$DM = 12cm$","D. $DM = 15cm$"],"explain":" <span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> \u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t d\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c t\u00ecm $\\dfrac{DM}{DP}$<br\/><b>B\u01b0\u1edbc 2:<\/b> Bi\u1ebfn \u0111\u1ed5i $\\dfrac{DM}{DP}$ v\u1ec1 d\u1ea1ng ph\u00e2n s\u1ed1 ch\u1ec9 ch\u1ee9a \u1ea9n l\u00e0 $DM$<br\/><b>B\u01b0\u1edbc 3:<\/b> T\u00ecm $DM$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D113.png' \/><\/center><br\/>$\\triangle{MNP}$ c\u00f3:<br\/> $ND$ l\u00e0 ph\u00e2n gi\u00e1c ngo\u00e0i c\u1ee7a $\\widehat{MNP}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{NM}{NP} = \\dfrac{DM}{DP}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{DM}{DP} = \\dfrac{6}{9} = \\dfrac{2}{3}$<br\/> $\\Rightarrow \\dfrac{DM}{DM + MP} = \\dfrac{2}{3}$ hay $\\dfrac{DM}{DM + 5} = \\dfrac{2}{3}$<br\/>$\\Rightarrow 3.DM = 2.DM + 10$ $\\Rightarrow DM = 10 \\text{(cm)}$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>$DM = 10cm$<\/span>","column":2}]}],"id_ques":1694},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" <span class='basic_left'>T\u00ednh \u0111\u1ed9 d\u00e0i c\u1ea1nh $GD$ trong h\u00ecnh v\u1ebd sau: <br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D114.png' \/><\/center><\/span>","select":[" A. $GD=10cm$"," B. $GD= 3cm$","C. $GD \\approx 2,8cm$","D. $GD \\approx 3,5cm$"],"explain":" <span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> \u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t d\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c t\u00ecm $\\dfrac{GD}{GE}$<br\/><b>B\u01b0\u1edbc 2:<\/b> Bi\u1ebfn \u0111\u1ed5i $\\dfrac{GD}{GE}$ v\u1ec1 d\u1ea1ng ph\u00e2n s\u1ed1 ch\u1ec9 ch\u1ee9a \u1ea9n l\u00e0 $GD$<br\/><b>B\u01b0\u1edbc 3:<\/b> T\u00ecm $GD$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D114.png' \/><\/center><br\/>$\\triangle{DEF}$ c\u00f3:<br\/> $FG$ l\u00e0 ph\u00e2n gi\u00e1c ngo\u00e0i c\u1ee7a $\\widehat{EFD}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{FD}{FE} = \\dfrac{GD}{GE}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{GD}{GE} = \\dfrac{5}{7} $<br\/> $\\Rightarrow \\dfrac{GD}{GD + DE} = \\dfrac{5}{7}$ hay $\\dfrac{GD}{GD + 4} = \\dfrac{5}{7}$<br\/>$\\Rightarrow 7.GD = 5.GD + 20$ $\\Rightarrow 2.GD = 20 \\Rightarrow GD =10\\, cm$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>A. $GD=10cm$<\/span>","column":2}]}],"id_ques":1695},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["="]]],"list":[{"point":5,"width":50,"content":"","type_input":"","ques":"<span class='basic_left'>Cho tam gi\u00e1c ABC, bi\u1ebft $BD$ l\u00e0 ph\u00e2n gi\u00e1c $\\widehat{ABC}$. T\u1eeb $B$ k\u1ebb $BH \\perp AC$ t\u1ea1i $H$.<br\/>So s\u00e1nh: $\\dfrac{S_{\\triangle{ABD}}}{S_{\\triangle{CBD}}}$ v\u00e0 $\\dfrac{AD}{DC}$<br\/> <b>\u0110\u00e1p \u00e1n:<\/b> $\\dfrac{S_{\\triangle{ABD}}}{S_{\\triangle{CBD}}}$ _input_ $\\dfrac{AD}{DC}$<\/span>","hint":"","explain":"<span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D115.png' \/><\/center><br\/> Ta c\u00f3:<br\/> $\\dfrac{ S_{ \\triangle{ABD}}}{S_{ \\triangle{CBD}}} = \\dfrac{\\dfrac{BH.AD}{2}}{\\dfrac{BH.DC}{2}} = \\dfrac{AD}{DC} $<br\/>V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 <span class='basic_pink'>\"=\"<\/span><br\/><span class='basic_left'><span class='basic_green'>Nh\u1eadn x\u00e9t:<\/span> Hai tam gi\u00e1c c\u00f3 chung \u0111\u01b0\u1eddng cao th\u00ec t\u1ec9 l\u1ec7 hai tam gi\u00e1c \u0111\u00f3 b\u1eb1ng t\u1ec9 l\u1ec7 hai c\u1ea1nh \u0111\u00e1y t\u01b0\u01a1ng \u1ee9ng.<\/span>"}]}],"id_ques":1696},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":" <span class='basic_left'>Cho h\u00ecnh v\u1ebd nh\u01b0 sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D116.png' \/><\/center><br\/>T\u00ednh $\\dfrac{NM}{NP}$<\/span>","select":[" A. $\\dfrac{NM}{NP} = \\dfrac{4}{3}$"," B. $\\dfrac{NM}{NP} = \\dfrac{4}{7}$","C. $\\dfrac{NM}{NP} = \\dfrac{3}{7}$","D. $\\dfrac{NM}{NP} = \\dfrac{3}{4}$"],"hint":"S\u1eed d\u1ee5ng \u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u1ea7n gi\u00e1c c\u1ee7a tam gi\u00e1c.","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D116.png' \/><\/center><br\/> $\\triangle MNP$ c\u00f3:<br\/> $NK$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{MNP}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{NM}{NP} = \\dfrac{KM}{KP}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{NM}{NP} = \\dfrac{3}{4}$ <br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> D. $\\dfrac{NM}{NP} = \\dfrac{3}{4}$<\/span>","column":2}]}],"id_ques":1697},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":" <span class='basic_left'>T\u00ednh $x$, $y$ trong h\u00ecnh v\u1ebd sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D118_1.jpg' \/><\/center><br\/><\/span>","select":[" A. $x = 6; y = 9cm$"," B. $x = 5cm; y = 10cm$","C. $x = 5,625cm; y = 9,375cm$","D. $x = 5,65cm; y = 9,35cm$"],"hint":"S\u1eed d\u1ee5ng \u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u1ea7n gi\u00e1c c\u1ee7a tam gi\u00e1c.","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D118.png' \/><\/center><br\/> $\\triangle ABC$ c\u00f3:<br\/> $AD$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{BAC}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{AB}{AC} = \\dfrac{DB}{DC}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{6}{10} = \\dfrac{x}{y}$<br\/> $\\Rightarrow \\dfrac{x}{6} = \\dfrac{y}{10}$<br\/>\u00c1p d\u1ee5ng t\u00ednh ch\u1ea5t d\u00e3y t\u1ec9 s\u1ed1 b\u1eb1ng nhau ta c\u00f3:<br\/>$\\dfrac{x}{6} = \\dfrac{y}{10} = \\dfrac{x + y}{6 + 10} = \\dfrac{15}{16}$<br\/>$\\Rightarrow \\begin{cases} x = \\dfrac{6.15}{16} = 5,625 \\text{(cm)} \\\\ y = \\dfrac{10.15}{16} = 9,375 \\text{(cm)} \\end{cases}$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> C. $x = 5,625cm; y = 9,375cm$<\/span>","column":2}]}],"id_ques":1698},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" <span class='basic_left'>T\u00ednh $x$, $y$ trong h\u00ecnh v\u1ebd sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D119.png' \/><\/center><br\/><\/span>","select":[" A. $x = 8cm; y = 12cm$"," B. $x = 12cm; y = 8cm$","C. $x = 6cm; y = 14cm$","D. $x = 9cm; y = 11cm$"],"hint":"S\u1eed d\u1ee5ng \u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u1ea7n gi\u00e1c c\u1ee7a tam gi\u00e1c.","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai15/lv1/img\/H8C3B2_D119.png' \/><\/center><br\/> $\\triangle DEF$ c\u00f3:<br\/> $DH$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{EDF}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{DE}{DF} = \\dfrac{HE}{HF}$ (\u0111\u1ecbnh l\u00ed t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{12}{18} = \\dfrac{x}{y}$<br\/> $\\Rightarrow \\dfrac{x}{12} = \\dfrac{y}{18}$<br\/>\u00c1p d\u1ee5ng t\u00ednh ch\u1ea5t d\u00e3y t\u1ec9 s\u1ed1 b\u1eb1ng nhau ta c\u00f3:<br\/>$\\dfrac{x}{12} = \\dfrac{y}{18} = \\dfrac{x + y}{12 + 18} = \\dfrac{20}{30}$<br\/>$\\Rightarrow \\begin{cases} x = \\dfrac{12.20}{30} = 8 \\text{(cm)} \\\\ y = \\dfrac{18.20}{30} = 12 \\text{(cm)} \\end{cases}$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> A. $x = 8cm; y = 12cm$<\/span>","column":2}]}],"id_ques":1699}],"lesson":{"save":0,"level":1}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý