đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["-1"],["2"]]],"list":[{"point":5,"width":40,"type_input":"","input_hint":["frac"],"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/12.jpg' \/><\/center> T\u00ecm $m, n$ sao cho $\\dfrac{x+1}{(x+2)(x+3)}=\\dfrac{m}{x+2}+\\dfrac{n}{x+3}$ v\u1edbi $x\\ne \\{-3;-2\\}$ <br\/> \u0110\u00e1p \u00e1n: $m =$ _input_ ; $n =$ _input_","hint":" Quy \u0111\u1ed3ng m\u1eabu th\u1ee9c v\u00e0 r\u00fat g\u1ecdn bi\u1ec3u th\u1ee9c $\\dfrac{m}{x+2}+\\dfrac{n}{x+3}$<br\/> S\u1eed d\u1ee5ng \u0111\u1ed3ng nh\u1ea5t h\u1ec7 s\u1ed1 hai t\u1eed th\u1ee9c \u0111\u1ec3 t\u00ecm $m, n.$ ","explain":"<span class='basic_left'> Ta c\u00f3: <br\/> $\\begin{align} &\\dfrac{m}{x+2}+\\dfrac{n}{x+3} \\\\& =\\dfrac{m\\left( x+3 \\right)}{\\left( x+2 \\right)\\left( x+3 \\right)}+\\dfrac{n\\left( x+2 \\right)}{\\left( x+2 \\right)\\left( x+3 \\right)} \\\\ & =\\dfrac{mx+3m+nx+2n}{\\left( x+2 \\right)\\left( x+3 \\right)} \\\\ & =\\dfrac{\\left( m+n \\right)x+3m+2n}{\\left( x+2 \\right)\\left( x+3 \\right)} \\\\ \\end{align}$<br\/> \u0110\u1ed3ng nh\u1ea5t h\u1ec7 s\u1ed1 hai t\u1eed th\u1ee9c: $x+1\\equiv \\left( m+n \\right)x+3m+2n,$ ta \u0111\u01b0\u1ee3c:<br\/> $\\left\\{ \\begin{aligned} & m+n=1 \\\\ & 3m+2n=1 \\\\ \\end{aligned} \\right.\\Rightarrow \\left\\{ \\begin{aligned} & m=-1 \\\\ & n=2 \\\\ \\end{aligned} \\right.$<\/span> "}]}],"id_ques":71},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["0"]]],"list":[{"point":5,"width":40,"type_input":"","input_hint":["frac"],"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/11.jpg' \/><\/center> Gi\u00e1 tr\u1ecb c\u1ee7a bi\u1ec3u th\u1ee9c $ \\dfrac{x+1}{2x+6}+\\dfrac{2x+3}{x\\left( x+3 \\right)}$ t\u1ea1i $x=-2$ l\u00e0 _input_ ","explain":"<span class='basic_left'> \u0110i\u1ec1u ki\u1ec7n: $x \\ne \\{-3;0\\}$ <br\/> Ta c\u00f3: <br\/> $\\begin{align} &\\dfrac{x+1}{2x+6}+\\dfrac{2x+3}{x\\left( x+3 \\right)} \\\\&=\\dfrac{x+1}{2\\left( x+3 \\right)}+\\dfrac{2x+3}{x\\left( x+3 \\right)} \\\\ & =\\dfrac{\\left( x+1 \\right)x}{2x\\left( x+3 \\right)}+\\dfrac{\\left( 2x+3 \\right)2}{2x\\left( x+3 \\right)} \\\\ & =\\dfrac{{{x}^{2}}+x}{2x\\left( x+3 \\right)}+\\dfrac{4x+6}{2x\\left( x+3 \\right)} \\\\ & =\\dfrac{{{x}^{2}}+x+4x+6}{2x\\left( x+3 \\right)} \\\\ & =\\dfrac{{{x}^{2}}+5x+6}{2x\\left( x+3 \\right)} \\\\ & =\\dfrac{{{x}^{2}}+3x+2x+6}{2x\\left( x+3 \\right)} \\\\ & =\\dfrac{x\\left( x+3 \\right)+2\\left( x+3 \\right)}{2x\\left( x+3 \\right)} \\\\ & =\\dfrac{\\left( x+3 \\right)\\left( x+2 \\right)}{2x\\left( x+3 \\right)} \\\\ & =\\dfrac{x+2}{2x} \\,\\, (1) \\\\ \\end{align}$ <br\/> Thay $x=-2$ v\u00e0o (1), ta \u0111\u01b0\u1ee3c:<br\/> $\\dfrac{x+2}{2x}=\\dfrac{-2+2}{2.(-2)}=0$<\/span> "}]}],"id_ques":72},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["-12"]]],"list":[{"point":5,"width":40,"type_input":"","input_hint":["frac"],"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/10.jpg' \/><\/center> Gi\u00e1 tr\u1ecb c\u1ee7a bi\u1ec3u th\u1ee9c $\\dfrac{4{{x}^{2}}-3x+17}{{{x}^{3}}-1}+\\dfrac{2x-1}{{{x}^{2}}+x+1}$$+\\dfrac{6}{1-x}$ t\u1ea1i $x=-1$ l\u00e0 _input_ ","explain":"<span class='basic_left'> \u0110i\u1ec1u ki\u1ec7n: $x \\ne 1$ <br\/> Ta c\u00f3: <br\/> $ \\dfrac{4{{x}^{2}}-3x+17}{{{x}^{3}}-1}+\\dfrac{2x-1}{{{x}^{2}}+x+1}$$+\\dfrac{6}{1-x} $ <br\/> $ =\\dfrac{4{{x}^{2}}-3x+17}{{{x}^{3}}-1}+\\dfrac{2x-1}{{{x}^{2}}+x+1}$$-\\dfrac{6}{x-1} $ <br\/> $ =\\dfrac{4{{x}^{2}}-3x+17}{\\left( x-1 \\right)\\left( {{x}^{2}}+x+1 \\right)}$$+\\dfrac{\\left( 2x-1 \\right)\\left( x-1 \\right)}{\\left( x-1 \\right)\\left( {{x}^{2}}+x+1 \\right)}$$-\\dfrac{6\\left( {{x}^{2}}+x+1 \\right)}{\\left( x-1 \\right)\\left( {{x}^{2}}+x+1 \\right)} $ <br\/> $ =\\dfrac{4{{x}^{2}}-3x+17+\\left( 2x-1 \\right)\\left( x-1 \\right)-6\\left( {{x}^{2}}+x+1 \\right)}{\\left( x-1 \\right)\\left( {{x}^{2}}+x+1 \\right)} $ <br\/> $ =\\dfrac{4{{x}^{2}}-3x+17+2{{x}^{2}}-3x+1-6{{x}^{2}}-6x-6}{\\left( x-1 \\right)\\left( {{x}^{2}}+x+1 \\right)} $ <br\/> $ =\\dfrac{-12x+12}{\\left( x-1 \\right)\\left( {{x}^{2}}+x+1 \\right)} $ <br\/> $ =\\dfrac{-12\\left( x-1 \\right)}{\\left( x-1 \\right)\\left( {{x}^{2}}+x+1 \\right)} $ <br\/> $ =\\dfrac{-12}{{{x}^{2}}+x+1}$ <br\/> Thay $x=-1$ v\u00e0o bi\u1ec3u th\u1ee9c r\u00fat g\u1ecdn, ta \u0111\u01b0\u1ee3c: <br\/> $\\dfrac{-12}{x^2+x+1}=\\dfrac{-12}{1-1+1}=-12$ <\/span> "}]}],"id_ques":73},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["5"],["18"]]],"list":[{"point":5,"width":40,"type_input":"","input_hint":["frac"],"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/9.jpg' \/><\/center> Gi\u00e1 tr\u1ecb c\u1ee7a bi\u1ec3u th\u1ee9c $\\dfrac{1}{x+2}+\\dfrac{3}{{{x}^{2}}-4}$$+\\dfrac{x-14}{\\left( {{x}^{2}}+4x+4 \\right)\\left( x-2 \\right)}$ t\u1ea1i $x=4$ l\u00e0 <div class=\"frac123\"><div class=\"ts\">_input_<\/div><div class=\"ms\">_input_<\/div><\/div>","explain":"<span class='basic_left'> \u0110i\u1ec1u ki\u1ec7n: $x \\ne \\{-2;2\\}$ <br\/> Ta c\u00f3: <br\/> $ \\dfrac{1}{x+2}+\\dfrac{3}{{{x}^{2}}-4}$$+\\dfrac{x-14}{\\left( {{x}^{2}}+4x+4 \\right)\\left( x-2 \\right)}$<br\/>$=\\dfrac{1}{x+2}+\\dfrac{3}{\\left( x+2 \\right)\\left( x-2 \\right)}$$+\\dfrac{x-14}{{{\\left( x+2 \\right)}^{2}}\\left( x-2 \\right)} $<br\/>$ =\\dfrac{\\left( x+2 \\right)\\left( x-2 \\right)}{{{\\left( x+2 \\right)}^{2}}\\left( x-2 \\right)}$$+\\dfrac{3\\left( x+2 \\right)}{{{\\left( x+2 \\right)}^{2}}\\left( x-2 \\right)}$$+\\dfrac{x-14}{{{\\left( x+2 \\right)}^{2}}\\left( x-2 \\right)} $<br\/>$=\\dfrac{{{x}^{2}}-4}{{{\\left( x+2 \\right)}^{2}}\\left( x-2 \\right)}$$+\\dfrac{3x+6}{{{\\left( x+2 \\right)}^{2}}\\left( x-2 \\right)}$$+\\dfrac{x-14}{{{\\left( x+2 \\right)}^{2}}\\left( x-2 \\right)} $<br\/>$ =\\dfrac{{{x}^{2}}-4+3x+6+x-14}{{{\\left( x+2 \\right)}^{2}}\\left( x-2 \\right)} $<br\/>$ =\\dfrac{{{x}^{2}}+4x-12}{{{\\left( x+2 \\right)}^{2}}\\left( x-2 \\right)} $<br\/>$ =\\dfrac{{{x}^{2}}+6x-2x-12}{{{\\left( x+2 \\right)}^{2}}\\left( x-2 \\right)} $<br\/>$=\\dfrac{x\\left( x+6 \\right)-2\\left( x+6 \\right)}{{{\\left( x+2 \\right)}^{2}}\\left( x-2 \\right)} $<br\/>$=\\dfrac{\\left( x+6 \\right)\\left( x-2 \\right)}{{{\\left( x+2 \\right)}^{2}}\\left( x-2 \\right)} $<br\/>$ =\\dfrac{x+6}{{{\\left( x+2 \\right)}^{2}}} $ <br\/> Thay $x = 4$ v\u00e0o bi\u1ec3u th\u1ee9c r\u00fat g\u1ecdn, ta \u0111\u01b0\u1ee3c:<br\/> $\\dfrac{x+6}{{{\\left( x+2 \\right)}^{2}}}=\\dfrac{4+6}{{{\\left( 4+2 \\right)}^{2}}}=\\dfrac{10}{36}=\\dfrac{5}{18}$<\/span> "}]}],"id_ques":74},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["-2"]]],"list":[{"point":5,"width":40,"type_input":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/8.jpg' \/><\/center> T\u00ecm $x,$ bi\u1ebft $\\dfrac{2x+1}{{{\\left( x-1 \\right)}^{2}}}-\\dfrac{2x+3}{{{x}^{2}}-1}=0$<br\/> \u0110\u00e1p \u00e1n: $x =$ _input_ ","hint":"Th\u1ef1c hi\u1ec7n quy \u0111\u1ed3ng v\u00e0 r\u00fat g\u1ecdn v\u1ebf tr\u00e1i. ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> <b> B\u01b0\u1edbc 1: <\/b> T\u00ecm \u0111i\u1ec1u ki\u1ec7n c\u1ee7a $x$ \u0111\u1ec3 c\u00e1c ph\u00e2n th\u1ee9c c\u00f3 ngh\u0129a.<br\/> <b> B\u01b0\u1edbc 2:<\/b> Th\u1ef1c hi\u1ec7n quy \u0111\u1ed3ng v\u00e0 r\u00fat g\u1ecdn v\u1ebf tr\u00e1i \u0111\u1ec3 t\u00ecm $x.$ <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/> \u0110i\u1ec1u ki\u1ec7n: $x\\ne \\{-1;1\\}$.<br\/> Ta c\u00f3: <br\/> $\\begin{align} & \\dfrac{2x+1}{{{\\left( x-1 \\right)}^{2}}}-\\dfrac{2x+3}{{{x}^{2}}-1}=0 \\\\ &\\Leftrightarrow \\dfrac{2x+1}{{{\\left( x-1 \\right)}^{2}}}-\\dfrac{2x+3}{\\left( x+1 \\right)\\left( x-1 \\right)}=0 \\\\ & \\Leftrightarrow \\dfrac{\\left( 2x+1 \\right)\\left( x+1 \\right)}{\\left( x+1 \\right){{\\left( x-1 \\right)}^{2}}}-\\dfrac{\\left( 2x+3 \\right)\\left( x-1 \\right)}{\\left( x+1 \\right){{\\left( x-1 \\right)}^{2}}}=0 \\\\ &\\Leftrightarrow \\dfrac{2{{x}^{2}}+3x+1}{\\left( x+1 \\right){{\\left( x-1 \\right)}^{2}}}-\\dfrac{2{{x}^{2}}+x-3}{\\left( x+1 \\right){{\\left( x-1 \\right)}^{2}}}=0 \\\\ &\\Leftrightarrow \\dfrac{2{{x}^{2}}+3x+1-2{{x}^{2}}-x+3}{\\left( x+1 \\right){{\\left( x-1 \\right)}^{2}}}=0 \\\\ &\\Leftrightarrow \\dfrac{2x+4}{\\left( x+1 \\right){{\\left( x-1 \\right)}^{2}}}=0 \\\\ & \\Rightarrow 2x+4=0 \\\\ & \\Leftrightarrow x=-2\\,\\,\\,\\,\\left( \\text{th\u1ecfa m\u00e3n} \\right) \\\\ \\end{align}$ <br\/> <span class='basic_pink'> V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $-2$. <\/span><\/span> "}]}],"id_ques":75},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["2"]]],"list":[{"point":5,"width":40,"type_input":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/5.jpg' \/><\/center> T\u00ecm $x,$ bi\u1ebft $\\dfrac{2{{x}^{2}}-3x+2}{{{x}^{3}}-1}+\\dfrac{4x-{{x}^{2}}-1}{{{x}^{3}}-1}=1$<br\/> \u0110\u00e1p \u00e1n: $x =$ _input_ ","explain":"<span class='basic_left'> \u0110i\u1ec1u ki\u1ec7n: $x\\ne 1$.<br\/> Ta c\u00f3: <br\/> $\\begin{align} & \\dfrac{2{{x}^{2}}-3x+2}{{{x}^{3}}-1}+\\dfrac{4x-{{x}^{2}}-1}{{{x}^{3}}-1}=1 \\\\ &\\Leftrightarrow \\dfrac{2{{x}^{2}}-3x+2+4x-{{x}^{2}}-1}{{{x}^{3}}-1}=1 \\\\ & \\Leftrightarrow\\dfrac{{{x}^{2}}+x+1}{{{x}^{3}}-1}=1 \\\\ &\\Leftrightarrow \\dfrac{{{x}^{2}}+x+1}{\\left( x-1 \\right)\\left( {{x}^{2}}+x+1 \\right)}=1 \\\\ &\\Leftrightarrow \\dfrac{1}{x-1}=1 \\\\ &\\Leftrightarrow x-1=1 \\\\ &\\Leftrightarrow x=2\\,\\,\\,\\left( th\u1ecfa \\, m\u00e3n \\right) \\\\ \\end{align}$ <br\/> <span class='basic_pink'> V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $2$. <\/span><\/span> "}]}],"id_ques":76},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["9"],["2"]]],"list":[{"point":5,"width":40,"type_input":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/4.jpg' \/><\/center> T\u00ecm $x$ bi\u1ebft $\\dfrac{1}{\\left( x-5 \\right)\\left( x-4 \\right)}+\\dfrac{1}{\\left( x-5 \\right)\\left( x-6 \\right)}$$=\\dfrac{-2}{\\left( x-5 \\right)\\left( x-6 \\right)}$<br\/> \u0110\u00e1p \u00e1n: $x=$ <div class=\"frac123\"><div class=\"ts\">_input_<\/div><div class=\"ms\">_input_<\/div><\/div>","explain":"<span class='basic_left'> \u0110i\u1ec1u ki\u1ec7n: $x\\ne \\{4;5;6\\}$.<br\/> Ta c\u00f3: <br\/> $ \\dfrac{1}{\\left( x-5 \\right)\\left( x-4 \\right)}+\\dfrac{1}{\\left( x-5 \\right)\\left( x-6 \\right)}$$=\\dfrac{-2}{\\left( x-5 \\right)\\left( x-6 \\right)} $ <br\/> $\\Leftrightarrow \\dfrac{1}{\\left( x-5 \\right)\\left( x-4 \\right)}+\\dfrac{1}{\\left( x-5 \\right)\\left( x-6 \\right)}$$-\\dfrac{-2}{\\left( x-5 \\right)\\left( x-6 \\right)}=0 $ <br\/> $\\Leftrightarrow \\dfrac{x-6}{\\left( x-4 \\right)\\left( x-5 \\right)\\left( x-6 \\right)}$$+\\dfrac{x-4}{\\left( x-4 \\right)\\left( x-5 \\right)\\left( x-6 \\right)}$$-\\dfrac{-2\\left( x-4 \\right)}{\\left( x-4 \\right)\\left( x-5 \\right)\\left( x-6 \\right)}=0 $ <br\/> $\\Leftrightarrow \\dfrac{x-6+x-4+2x-8}{\\left( x-4 \\right)\\left( x-5 \\right)\\left( x-6 \\right)}=0 $ <br\/> $\\Leftrightarrow \\dfrac{4x-18}{\\left( x-4 \\right)\\left( x-5 \\right)\\left( x-6 \\right)}=0 $ <br\/> $\\Rightarrow 4x-18=0 $ <br\/> $\\Leftrightarrow x=\\dfrac{18}{4}=\\dfrac{9}{2} \\,(\\text{th\u1ecfa m\u00e3n})$<\/span> "}]}],"id_ques":77},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t.<br\/> K\u1ebft qu\u1ea3 ph\u00e9p t\u00ednh d\u01b0\u1edbi \u0111\u00e2y \u0111\u00fang hay sai","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/3.jpg' \/><\/center> $ x-\\dfrac{xy}{x+y}-\\dfrac{{{x}^{3}}}{{{x}^{2}}-{{y}^{2}}}$$=\\dfrac{-{{x}^{2}}y}{{{x}^{2}}-{{y}^{2}}}$ ","select":["\u0110\u00fang","Sai"],"hint":" Ta th\u1ef1c hi\u1ec7n r\u00fat g\u1ecdn v\u1ebf tr\u00e1i r\u1ed3i so s\u00e1nh k\u1ebft qu\u1ea3 v\u1edbi v\u1ebf ph\u1ea3i. ","explain":"<span class='basic_left'> Ta c\u00f3: <br\/> V\u1ebf tr\u00e1i = $x-\\dfrac{xy}{x+y}-\\dfrac{{{x}^{3}}}{{{x}^{2}}-{{y}^{2}}}$<br\/>$=x-\\dfrac{xy}{x+y}-\\dfrac{{{x}^{3}}}{\\left( x+y \\right)\\left( x-y \\right)} $<br\/>$ =\\dfrac{x\\left( {{x}^{2}}-{{y}^{2}} \\right)}{\\left( x+y \\right)\\left( x-y \\right)}$$-\\dfrac{xy\\left( x-y \\right)}{\\left( x+y \\right)\\left( x-y \\right)}$$-\\dfrac{{{x}^{3}}}{\\left( x+y \\right)\\left( x-y \\right)} $<br\/>$ =\\dfrac{{{x}^{3}}-x{{y}^{2}}}{\\left( x+y \\right)\\left( x-y \\right)}$$-\\dfrac{{{x}^{2}}y-x{{y}^{2}}}{\\left( x+y \\right)\\left( x-y \\right)}$$-\\dfrac{{{x}^{3}}}{\\left( x+y \\right)\\left( x-y \\right)} $<br\/>$ =\\dfrac{{{x}^{3}}-x{{y}^{2}}-{{x}^{2}}y+x{{y}^{2}}-{{x}^{3}}}{\\left( x+y \\right)\\left( x-y \\right)} $<br\/>$ =\\dfrac{-{{x}^{2}}y}{{{x}^{2}}-{{y}^{2}}} $ = V\u1ebf ph\u1ea3i <span><br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 \u0110\u00fang.<\/span>","column":2}]}],"id_ques":78},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t.<br\/> K\u1ebft qu\u1ea3 ph\u00e9p t\u00ednh d\u01b0\u1edbi \u0111\u00e2y \u0111\u00fang hay sai","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/2.jpg' \/><\/center> $\\dfrac{1}{x}+\\dfrac{1}{x+1}+\\dfrac{1-2x}{x\\left( x+1 \\right)}=\\dfrac{3-2x}{x(x+1)}$ ","select":["\u0110\u00fang","Sai"],"explain":"<span class='basic_left'> Ta c\u00f3: <br\/> V\u1ebf tr\u00e1i = $\\dfrac{1}{x}+\\dfrac{1}{x+1}+\\dfrac{1-2x}{x\\left( x+1 \\right)} $<br\/>$=\\dfrac{1.\\left( x+1 \\right)}{x\\left( x+1 \\right)}+\\dfrac{1.x}{x\\left( x+1 \\right)}+\\dfrac{1-2x}{x\\left( x+1 \\right)}$<br\/>$ =\\dfrac{x+1}{x\\left( x+1 \\right)}+\\dfrac{x}{x\\left( x+1 \\right)}+\\dfrac{1-2x}{x\\left( x+1 \\right)} $<br\/>$ =\\dfrac{x+1+x+1-2x}{x\\left( x+1 \\right)} $<br\/>$ =\\dfrac{2}{x\\left( x+1 \\right)}\\ne$ V\u1ebf ph\u1ea3i <span><br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 Sai.<\/span>","column":2}]}],"id_ques":79},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t.<br\/> K\u1ebft qu\u1ea3 ph\u00e9p t\u00ednh d\u01b0\u1edbi \u0111\u00e2y \u0111\u00fang hay sai","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/16.jpg' \/><\/center> $\\dfrac{{{x}^{3}}}{1-x}+{{x}^{2}}+x+1=\\dfrac{1}{1-x}$ ","select":["\u0110\u00fang","Sai"],"explain":"<span class='basic_left'> Ta c\u00f3: <br\/> V\u1ebf tr\u00e1i = $\\dfrac{{{x}^{3}}}{1-x}+{{x}^{2}}+x+1$<br\/>$=\\dfrac{{{x}^{3}}}{1-x}+\\dfrac{\\left( {{x}^{2}}+x+1 \\right)\\left( 1-x \\right)}{1-x} $<br\/>$ =\\dfrac{{{x}^{3}}+1-{{x}^{3}}}{1-x} $<br\/>$ =\\dfrac{1}{1-x}$ = V\u1ebf ph\u1ea3i <span><br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 \u0110\u00fang.<\/span>","column":2}]}],"id_ques":80},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/13.jpg' \/><\/center> K\u1ebft qu\u1ea3 c\u1ee7a ph\u00e9p tr\u1eeb $\\dfrac{a+b}{a}-\\dfrac{a}{a-b}-\\dfrac{{{b}^{2}}}{{{a}^{2}}-ab}$ l\u00e0: ","select":["A. $\\dfrac{2a}{a(a-b)}$ ","B. $0$","C. $\\dfrac{b^2}{a(a-b)}$","D. $\\dfrac{-2b^2}{a(a-b)}$"],"explain":"<span class='basic_left'> Ta c\u00f3:<br\/> $\\begin{align} &\\dfrac{a+b}{a}-\\dfrac{a}{a-b}-\\dfrac{{{b}^{2}}}{{{a}^{2}}-ab}\\\\&=\\dfrac{a+b}{a}-\\dfrac{a}{a-b}-\\dfrac{{{b}^{2}}}{a\\left( a-b \\right)} \\\\ & =\\dfrac{\\left( a+b \\right)\\left( a-b \\right)}{a\\left( a-b \\right)}-\\dfrac{a.a}{a\\left( a-b \\right)}-\\dfrac{{{b}^{2}}}{a\\left( a-b \\right)} \\\\ & =\\dfrac{{{a}^{2}}-{{b}^{2}}-{{a}^{2}}-{{b}^{2}}}{a\\left( a-b \\right)} \\\\ & =\\dfrac{-2{{b}^{2}}}{a\\left( a-b \\right)} \\\\ \\end{align}$ <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 D. <\/span><\/span> ","column":2}]}],"id_ques":81},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng trong ph\u00e9p tr\u1eeb c\u00e1c ph\u00e2n th\u1ee9c sau","title_trans":"","temp":"fill_the_blank","correct":[[["-6m"]]],"list":[{"point":5,"width":40,"type_input":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/12.jpg' \/><\/center> $\\dfrac{{{m}^{2}}-3m+9}{{{m}^{3}}-27}-\\dfrac{1}{m-3} $$=\\dfrac{\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}}{m^3-27}$ ","explain":"<span class='basic_left'> Ta c\u00f3:<br\/> $ \\dfrac{{{m}^{2}}-3m+9}{{{m}^{3}}-27}-\\dfrac{1}{m-3}$<br\/>$=\\dfrac{{{m}^{2}}-3m+9}{\\left( m-3 \\right)\\left( {{m}^{2}}+3m+9 \\right)}-\\dfrac{1}{m-3} $<br\/>$ =\\dfrac{{{m}^{2}}-3m+9}{\\left( m-3 \\right)\\left( {{m}^{2}}+3m+9 \\right)}$$-\\dfrac{1.\\left( {{m}^{2}}+3m+9 \\right)}{\\left( m-3 \\right)\\left( {{m}^{2}}+3m+9 \\right)} $<br\/>$ =\\dfrac{{{m}^{2}}-3m+9-{{m}^{2}}-3m-9}{\\left( m-3 \\right)\\left( {{m}^{2}}+3m+9 \\right)} $<br\/>$ =\\dfrac{-6m}{{{m}^{3}}-27} $ <br\/> <span class='basic_pink'> K\u1ebft qu\u1ea3 c\u1ee7a ph\u00e9p t\u00ednh tr\u00ean l\u00e0 $\\dfrac{-6m}{m^3-27}$. <\/span><\/span> "}]}],"id_ques":82},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng trong ph\u00e9p tr\u1eeb c\u00e1c ph\u00e2n th\u1ee9c sau","title_trans":"","temp":"fill_the_blank","correct":[[["1"],["x"]]],"list":[{"point":5,"width":40,"type_input":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/11.jpg' \/><\/center> $\\dfrac{3}{2x+6}-\\dfrac{x-6}{2{{x}^{2}}+6x}=\\dfrac{\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}}{\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}}$ ","explain":"<span class='basic_left'> Ta c\u00f3:<br\/> $\\begin{align} &\\dfrac{3}{2x+6}-\\dfrac{x-6}{2{{x}^{2}}+6x}\\\\&=\\dfrac{3}{2\\left( x+3 \\right)}-\\dfrac{x-6}{2x\\left( x+3 \\right)} \\\\ & =\\dfrac{3.x}{2x\\left( x+3 \\right)}-\\dfrac{x-6}{2x\\left( x+3 \\right)} \\\\ & =\\dfrac{3x-x+6}{2x\\left( x+3 \\right)} \\\\ & =\\dfrac{2x+6}{2x\\left( x+3 \\right)} \\\\ & =\\dfrac{2\\left( x+3 \\right)}{2x\\left( x+3 \\right)} \\\\ & =\\dfrac{1}{x} \\\\ \\end{align}$ <br\/> <span class='basic_pink'> K\u1ebft qu\u1ea3 c\u1ee7a ph\u00e9p t\u00ednh tr\u00ean l\u00e0 $\\dfrac{1}{x}$. <\/span><\/span> "}]}],"id_ques":83},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng trong ph\u00e9p c\u1ed9ng c\u00e1c ph\u00e2n th\u1ee9c sau","title_trans":"","temp":"fill_the_blank","correct":[[["x-2y","x+2y"],["x+2y","x-2y"]]],"list":[{"point":5,"width":40,"type_input":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/10.jpg' \/><\/center> $\\dfrac{{{x}^{2}}-2xy}{2{{x}^{2}}+5xy+2{{y}^{2}}}$$+\\dfrac{2xy-4{{y}^{2}}}{2{{x}^{2}}+5xy+2{{y}^{2}}}$$=\\dfrac{(\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}).(\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{})}{2{{x}^{2}}+5xy+2{{y}^{2}}}$ ","explain":"<span class='basic_left'> Ta c\u00f3:<br\/> $\\begin{align} & \\dfrac{{{x}^{2}}-2xy}{2{{x}^{2}}+5xy+2{{y}^{2}}}+\\dfrac{2xy-4{{y}^{2}}}{2{{x}^{2}}+5xy+2{{y}^{2}}} \\\\ & =\\dfrac{{{x}^{2}}-2xy+2xy-4{{y}^{2}}}{2{{x}^{2}}+5xy+2{{y}^{2}}} \\\\ & =\\dfrac{{{x}^{2}}-4{{y}^{2}}}{2{{x}^{2}}+5xy+2{{y}^{2}}} \\\\ & =\\dfrac{\\left( x-2y \\right)\\left( x+2y \\right)}{2{{x}^{2}}+5xy+2{{y}^{2}}} \\\\ \\end{align}$ <br\/> <span class='basic_pink'> K\u1ebft qu\u1ea3 c\u1ee7a ph\u00e9p t\u00ednh tr\u00ean l\u00e0 $\\dfrac{\\left( x-2y \\right)\\left( x+2y \\right)}{2{{x}^{2}}+5xy+2{{y}^{2}}}$. <\/span><\/span> "}]}],"id_ques":84},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng trong ph\u00e9p c\u1ed9ng c\u00e1c ph\u00e2n th\u1ee9c sau","title_trans":"","temp":"fill_the_blank","correct":[[["x-1"]]],"list":[{"point":5,"width":40,"type_input":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/9.jpg' \/><\/center> $\\dfrac{2{{x}^{2}}-x}{{{x}^{2}}+x+1}+\\dfrac{{{x}^{3}}-2{{x}^{2}}}{{{x}^{2}}+x+1}$$+\\dfrac{x-1}{{{x}^{2}}+x+1}=\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}$ ","explain":"<span class='basic_left'> Ta c\u00f3:<br\/> $\\dfrac{2{{x}^{2}}-x}{{{x}^{2}}+x+1}+\\dfrac{{{x}^{3}}-2{{x}^{2}}}{{{x}^{2}}+x+1}$$+\\dfrac{x-1}{{{x}^{2}}+x+1} $<br\/>$ =\\dfrac{2{{x}^{2}}-x+{{x}^{3}}-2{{x}^{2}}+x-1}{{{x}^{2}}+x+1} $<br\/>$ =\\dfrac{{{x}^{3}}-1}{{{x}^{2}}+x+1} $<br\/>$ =\\dfrac{\\left( x-1 \\right)\\left( {{x}^{2}}+x+1 \\right)}{{{x}^{2}}+x+1} $<br\/>$ =x-1 $ <br\/> <span class='basic_pink'> K\u1ebft qu\u1ea3 c\u1ee7a ph\u00e9p t\u00ednh tr\u00ean l\u00e0 $x-1$. <\/span><\/span> "}]}],"id_ques":85},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/8.jpg' \/><\/center> Quy \u0111\u1ed3ng m\u1eabu th\u1ee9c c\u00e1c ph\u00e2n th\u1ee9c $\\dfrac{x-1}{x^2+2x+1}$; $\\dfrac{2+x}{x+1}$ \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0:","select":["A. $\\dfrac{x-1}{(x+1)^2}$; $\\dfrac{2+x}{(x+1)^2}$ ","B. $\\dfrac{x-1}{(x+1)^2}$; $\\dfrac{(2+x)(x+1)}{(x+1)^2}$ ","C. $\\dfrac{x^2-1}{x+1}$; $\\dfrac{2+x}{x+1}$"],"hint":" <b> Mu\u1ed1n quy \u0111\u1ed3ng m\u1eabu th\u1ee9c c\u00e1c ph\u00e2n th\u1ee9c:<\/b> <br\/> + T\u00ecm m\u1eabu th\u1ee9c chung <br\/> + X\u00e1c \u0111\u1ecbnh c\u00e1c nh\u00e2n t\u1eed ph\u1ee5: nh\u00e2n t\u1eed ph\u1ee5 l\u00e0 th\u01b0\u01a1ng c\u1ee7a m\u1eabu th\u1ee9c chung v\u1edbi t\u1eebng m\u1eabu th\u1ee9c <br\/> + Nh\u00e2n t\u1eed v\u00e0 m\u1eabu c\u1ee7a m\u1ed7i ph\u00e2n th\u1ee9c v\u1edbi nh\u00e2n t\u1eed ph\u1ee5 c\u1ee7a n\u00f3. ","explain":"<span class='basic_left'> Ta c\u00f3: $\\dfrac{x-1}{x^2+2x+1}=\\dfrac{x-1}{(x+1)^2}$ <br\/> M\u1eabu th\u1ee9c chung: $(x+1)^2$ <br\/> Nh\u00e2n t\u1eed ph\u1ee5 c\u1ee7a m\u1eabu th\u1ee9c $(x+1)^2$ l\u00e0: $1$. Do \u0111\u00f3:<br\/> $\\dfrac{x-1}{x^2+2x+1}=\\dfrac{x-1}{(x+1)^2}$$=\\dfrac{(x-1).1}{(x+1)^2.1}=\\dfrac{x-1}{(x+1)^2}$ <br\/> Nh\u00e2n t\u1eed ph\u1ee5 c\u1ee7a m\u1eabu th\u1ee9c $x+1$ l\u00e0: $x+1$. Do \u0111\u00f3:<br\/> $\\dfrac{2+x}{x+1}=\\dfrac{(2+x)(x+1)}{(x+1)^2}$ <span><br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 B.<\/span>","column":1}]}],"id_ques":86},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/5.jpg' \/><\/center> Quy \u0111\u1ed3ng m\u1eabu th\u1ee9c c\u00e1c ph\u00e2n th\u1ee9c $\\dfrac{3}{x^2y^3}$; $\\dfrac{7}{10x^5y^2}$ \u0111\u01b0\u1ee3c k\u1ebft qu\u1ea3 l\u00e0:","select":["A. $\\dfrac{30x^3}{10x^5y^3}$; $\\dfrac{7y}{10x^5y^3}$ ","B. $\\dfrac{1}{10x^5y^3}$; $\\dfrac{7}{10x^5y^3}$ ","C. $\\dfrac{3x^3}{10x^5y^3}$; $\\dfrac{7}{10x^5y^3}$"],"explain":"<span class='basic_left'> M\u1eabu th\u1ee9c chung: $10x^5y^3$ <br\/> Nh\u00e2n t\u1eed ph\u1ee5 c\u1ee7a m\u1eabu th\u1ee9c $x^2y^3$ l\u00e0: $10x^3$. Do \u0111\u00f3:<br\/> $\\dfrac{3}{x^2y^3}=\\dfrac{3.10x^3}{x^2y^3.10x^3}=\\dfrac{30x^3}{10x^5y^3}$ <br\/> Nh\u00e2n t\u1eed ph\u1ee5 c\u1ee7a m\u1eabu th\u1ee9c $10x^5y^2$ l\u00e0: $y$. Do \u0111\u00f3:<br\/> $\\dfrac{7}{10x^5y^2}=\\dfrac{7.x}{10x^5y^2.y}=\\dfrac{7y}{10x^5y^3}$ <span><br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 A.<\/span>","column":3}]}],"id_ques":87},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/4.jpg' \/><\/center> M\u1eabu th\u1ee9c chung c\u1ee7a hai ph\u00e2n th\u1ee9c $\\dfrac{1}{x^2+x+1}$ v\u00e0 $\\dfrac{2}{x-1}$ l\u00e0:","select":["A. $1-x^3$ ","B. $x^2-1$ ","C. $1-x^2$","D. $x^3-1$"],"explain":"<span class='basic_left'> C\u00e1c m\u1eabu th\u1ee9c kh\u00f4ng ph\u00e2n t\u00edch \u0111\u01b0\u1ee3c th\u00e0nh nh\u00e2n t\u1eed.<br\/> V\u1eady m\u1eabu th\u1ee9c chung l\u00e0: $(x^2+x+1)(x-1)=x^3-1$ <span><br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 D.<\/span> <br\/> <b> L\u01b0u \u00fd: <\/b> C\u00e1c m\u1eabu th\u1ee9c kh\u00f4ng ph\u00e2n t\u00edch \u0111\u01b0\u1ee3c th\u00e0nh nh\u00e2n t\u1eed th\u00ec m\u1eabu th\u1ee9c chung l\u00e0 t\u00edch c\u1ee7a c\u00e1c m\u1eabu th\u1ee9c","column":2}]}],"id_ques":88},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/3.jpg' \/><\/center> M\u1eabu th\u1ee9c chung c\u1ee7a hai ph\u00e2n th\u1ee9c $\\dfrac{x-1}{x^2+2x-3}$ v\u00e0 $\\dfrac{-1}{x+3}$ l\u00e0:","select":["A. $x+3$ ","B. $x+1$ ","C. $x-1$","D. $x^2+2x$"],"explain":"<span class='basic_left'> Ta c\u00f3: <br\/> $\\begin{align} \\dfrac{x-1}{{{x}^{2}}+2x-3}&=\\dfrac{x-1}{{{x}^{2}}+3x-x-3} \\\\ & =\\dfrac{x-1}{x\\left( x+3 \\right)-\\left( x+3 \\right)} \\\\ & =\\dfrac{x-1}{\\left( x+3 \\right)\\left( x-1 \\right)} \\\\ & =\\dfrac{1}{x+3} \\\\ \\end{align}$ <br\/> Suy ra m\u1eabu th\u1ee9c chung c\u1ee7a $\\dfrac{1}{x+3}$ v\u00e0 $\\dfrac{-1}{x+3}$ l\u00e0: $x+3$ <br\/> V\u1eady m\u1eabu th\u1ee9c chung c\u1ee7a $\\dfrac{x-1}{x^2+2x-3}$ v\u00e0 $\\dfrac{-1}{x+3}$ l\u00e0: $x+3$ <span><br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 A.<\/span>","column":2}]}],"id_ques":89},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai13/lv2/img\/2.jpg' \/><\/center> M\u1eabu th\u1ee9c chung c\u1ee7a hai ph\u00e2n th\u1ee9c $\\dfrac{1}{(x-2)(x+3)}$ v\u00e0 $\\dfrac{-2}{x+3}$ l\u00e0:","select":["A. $(x-2)(x+3)$ ","B. $x-2$ ","C. $x+3$","D. $(x+2)(x-3)$"],"explain":"<span class='basic_left'> $BCNN(1;1)=1$ <br\/> S\u1ed1 m\u0169 cao nh\u1ea5t c\u1ee7a $x-2$ l\u00e0 $1;$ s\u1ed1 m\u0169 cao nh\u1ea5t c\u1ee7a $x+3$ l\u00e0 $1.$ <br\/> V\u1eady m\u1eabu th\u1ee9c chung l\u00e0: $(x-2)(x+3)$ <span><br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 A. <\/span>","column":2}]}],"id_ques":90}],"lesson":{"save":0,"level":2}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý