đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":10,"ques":"<span class='basic_left'>T\u00ecm \u0111\u1ed9 d\u00e0i c\u1ee7a $x$ trong h\u00ecnh v\u1ebd sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv3/img\/H8C3B5_K102.png' \/><\/center><\/span>","select":["A. $x = 4,5$","B. $x = 3,5$","C. $x = 3,75$","D. $x = 6$"],"hint":"Ch\u1ee9ng minh $EF \/\/ BC$. T\u1eeb \u0111\u00f3 \u00e1p d\u1ee5ng h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00ed Ta-l\u00e9t \u0111\u1ec3 t\u00ecm $x$.","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> T\u00ednh t\u1ec9 s\u1ed1 $\\dfrac{EA}{EB}$ v\u00e0 $\\dfrac{FA}{FC}$<br\/><b>B\u01b0\u1edbc 2:<\/b> T\u1eeb t\u1ec9 s\u1ed1 t\u00ecm \u0111\u01b0\u1ee3c \u1edf b\u01b0\u1edbc 1, \u00e1p d\u1ee5ng \u0111\u1ecbnh l\u00ed Ta-l\u00e9t \u0111\u1ea3o ch\u1ee9ng minh \u0111\u01b0\u1ee3c $EF$ \/\/ $BC$<br\/><b>B\u01b0\u1edbc 3:<\/b> \u00c1p d\u1ee5ng h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00ed Ta-l\u00e9t t\u00ecm $x$.<\/span> <br\/> <span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv3/img\/H8C3B5_K102.png' \/><\/center><br\/>Ta c\u00f3:<br\/>$\\left.\\begin{array}{l} \\dfrac{EA}{EB} = \\dfrac{3}{5} \\\\ \\dfrac{FA}{FC} = \\dfrac{4,5}{7,5} = \\dfrac{3}{5} \\end{array} \\right\\}$ $\\Rightarrow \\dfrac{EA}{EB} = \\dfrac{FA}{FC}$ <br\/> $\\Rightarrow EF \/\/ BC$ (\u0111\u1ecbnh l\u00ed Ta-l\u00e9t \u0111\u1ea3o)<br\/>X\u00e9t $\\triangle ABC$ c\u00f3: $EF \/\/ BC$ (ch\u1ee9ng minh tr\u00ean)<br\/> $\\Rightarrow \\dfrac{AE}{AB}=\\dfrac{EF}{BC} $ (h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00ed Ta-l\u00e9t)<br\/>$\\Rightarrow \\dfrac{AE}{AE + EB}=\\dfrac{EF}{BC} $<br\/> $\\Rightarrow$ $\\dfrac{3}{3 + 5}=\\dfrac{x}{10} $<br\/> $\\Rightarrow$ $\\dfrac{3}{8}=\\dfrac{x}{10} $<br\/> $\\Rightarrow$ $x = \\dfrac{3.10}{8} = 3,75$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>C. $x = 3,75$<\/span>","column":2}]}],"id_ques":1790},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["8"],["10"]]],"list":[{"point":10,"width":50,"content":"","type_input":"","ques":"<span class='basic_left'>Cho tam gi\u00e1c $ABC$ c\u00f3 $AB = 12cm$, $AC = 18cm$, \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c $AD$. Tr\u00ean $AD$ l\u1ea5y \u0111i\u1ec3m $E$ sao cho $AE = \\dfrac{2}{3}.AD$. G\u1ecdi $K$ l\u00e0 giao \u0111i\u1ec3m c\u1ee7a $BE$ v\u00e0 $AC$. T\u00ednh \u0111\u1ed9 d\u00e0i $AK$ v\u00e0 $KC$<br\/> <b>\u0110\u00e1p \u00e1n:<\/b> $AK$ = _input_ ($cm$); $KC$ = _input_ ($cm$)<\/span> ","hint":"K\u1ebb $DI \/\/ BK$ ($I \\in AC$)","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv3/img\/H8C3B5_K101.png' \/><\/center><br\/>$\\blacktriangleright$ $AD$ l\u00e0 \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a $\\triangle{ABC}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{BD}{DC} = \\dfrac{AB}{AC}$ (t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{BD}{DC} = \\dfrac{12}{18} = \\dfrac{2}{3}$<br\/>$\\Rightarrow \\dfrac{BD}{BC} = \\dfrac{BD}{DC + BD} = \\dfrac{2}{5}$<br\/>$\\blacktriangleright$ K\u1ebb $DI \/\/ BK$ ($I \\in AC$), ta c\u00f3:<br\/>$\\dfrac{AK}{KI} = \\dfrac{AE}{ED} = \\dfrac{2}{1}$ <b>(1)<\/b><br\/>$\\dfrac{KI}{KC} = \\dfrac{BD}{BC} = \\dfrac{2}{5}$ <b>(2)<\/b><br\/>T\u1eeb (1) v\u00e0 (2), ta c\u00f3:<br\/>$\\dfrac{AK}{KI}.\\dfrac{KI}{KC} = \\dfrac{2}{1}.\\dfrac{2}{5}$ $\\Rightarrow \\dfrac{AK}{KC} = \\dfrac{4}{5} \\Rightarrow \\dfrac{AK}{4} = \\dfrac{KC}{5}$<br\/>$\\blacktriangleright$ \u00c1p d\u1ee5ng t\u00ednh ch\u1ea5t d\u00e3y t\u1ec9 s\u1ed1 b\u1eb1ng nhau, ta c\u00f3:<br\/> $\\dfrac{AK}{4} = \\dfrac{KC}{5} = \\dfrac{AK + KC}{4 + 5} = \\dfrac{AC}{9} = \\dfrac{18}{9} = 2$<br\/>$\\Rightarrow AK = 2.4 = 8 \\text{(cm)}; KC = 2.5 = 10 \\text{(cm)}$<br\/>V\u1eady c\u00e1c s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u1ea7n l\u01b0\u1ee3t l\u00e0 <span class='basic_pink'>8; 10<\/span> "}]}],"id_ques":1791},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":10,"ques":"<span class='basic_left'>Cho tam gi\u00e1c $ABC$ c\u00f3 $BC = a, CA = b, AB = c$. Bi\u1ebft r\u1eb1ng $\\widehat{A} = 2\\widehat{B}$.<br\/><b> H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t<\/b><\/span>","select":["A. $a^2 = b^2 + bc$","B. $a^2 = b^2 + ac$","C. $a^2 = b^2 + ab$","D. $a^2 = b^2 - bc$"],"hint":"K\u1ebb \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c $AD$","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv3/img\/H8C3B5_K103.png' \/><\/center><br\/>$\\blacktriangleright$ K\u1ebb \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c $AD$<br\/>$\\Rightarrow \\dfrac{AB}{AC} = \\dfrac{BD}{DC}$ (t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c) <br\/>$\\Rightarrow \\dfrac{DC}{AC} = \\dfrac{BD}{AB}$<br\/>$\\blacktriangleright$ \u00c1p d\u1ee5ng t\u00ednh ch\u1ea5t d\u00e3y t\u1ec9 s\u1ed1 b\u1eb1ng nhau, ta c\u00f3:<br\/>$\\dfrac{DC}{AC} = \\dfrac{BD}{AB} = \\dfrac{DC + BD}{AC + AB} = \\dfrac{a}{c + b}$<br\/>$\\Rightarrow CD = \\dfrac{ab}{c + b}$ <br\/> $\\blacktriangleright$ L\u1ea1i c\u00f3: $\\widehat{A} = 2\\widehat{B}$ $\\Rightarrow \\widehat{B} = \\dfrac{\\widehat{A}}{2}$<br\/>M\u00e0 $\\widehat{A_1} = \\widehat{A_2} = \\dfrac{\\widehat{A}}{2}$ ($AD$ l\u00e0 \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c)<br\/>$\\Rightarrow \\widehat{A_1} = \\widehat{A_2} = \\widehat{B}$<br\/>$\\blacktriangleright$ X\u00e9t $\\triangle{BCA}$ v\u00e0 $\\triangle{ACD}$ c\u00f3: <br\/> + $\\widehat{C}$ chung<br\/>+ $\\widehat{B} = \\widehat{A_2}$ (ch\u1ee9ng minh tr\u00ean)<br\/>$\\Rightarrow \\triangle{BCA} \\backsim \\triangle{ACD}$ (g\u00f3c -g\u00f3c)<br\/>$\\Rightarrow \\dfrac{BC}{AC} = \\dfrac{AC}{CD}$ (c\u1eb7p c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng t\u1ec9 l\u1ec7)<br\/>$\\Rightarrow \\dfrac{a}{b} = \\dfrac{b}{\\dfrac{ab}{b + c}} \\Rightarrow \\dfrac{a}{b} = \\dfrac{b(b + c)}{ab}$ $\\Rightarrow a^2 = b^2 + bc$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>A. $a^2 = b^2 + bc$<\/span> <\/span>","column":2}]}],"id_ques":1792},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":10,"ques":" <span class='basic_left'> Cho $\\triangle{ABC}$ $\\backsim$ $\\triangle{HIK}$ theo t\u1ec9 s\u1ed1 \u0111\u1ed3ng d\u1ea1ng $k = \\dfrac{3}{7}$. T\u00ednh chu vi $\\triangle{HIK}$ bi\u1ebft chu vi $\\triangle{ABC}$ b\u1eb1ng $45cm$.<br\/><\/span>","select":[" A. $C_{\\triangle{HIK}} = 75cm$"," B. $C_{\\triangle{HIK}} = 85cm$","C. $C_{\\triangle{HIK}} = 105cm$","D. $C_{\\triangle{HIK}} = 125cm$"],"hint":"","explain":"<span class='basic_left'>Ta c\u00f3:<br\/>$\\triangle{ABC}$ $\\backsim$ $\\triangle{HIK}$ theo t\u1ec9 s\u1ed1 \u0111\u1ed3ng d\u1ea1ng $k = \\dfrac{3}{7}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\begin{cases} AB = \\dfrac{3}{7}. HI \\\\ AC = \\dfrac{3}{7}. HK \\\\ BC = \\dfrac{3}{7}. IK \\end{cases}$ <br\/> $\\Rightarrow AB + AC + BC = \\dfrac{3}{7} (HI + HK + IK)$ <br\/>Hay $C_{\\triangle{ABC}} = \\dfrac{3}{7}.C_{\\triangle{HIK}}$ <br\/>$\\Rightarrow C_{\\triangle{HIK}} = \\dfrac{7}{3} C_{\\triangle{ABC}} = \\dfrac{7}{3}.45 = 105 \\text{(cm)}$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>C. $C_{\\triangle{HIK}} = 105cm$<\/span><br\/><span class='basic_left'><span class='basic_green'>Nh\u1eadn x\u00e9t:<\/span><br\/>Hai tam gi\u00e1c \u0111\u1ed3ng d\u1ea1ng c\u00f3 t\u1ec9 s\u1ed1 \u0111\u1ed3ng d\u1ea1ng b\u1eb1ng t\u1ec9 s\u1ed1 chu vi.<\/span> <br\/><br\/> ","column":2}]}],"id_ques":1793},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":10,"ques":" <span class='basic_left'> Cho $\\triangle{ABC}$ v\u00e0 c\u00e1c \u0111\u01b0\u1eddng cao $BD$, $CE$. T\u00ednh $\\widehat{AED}$ bi\u1ebft $\\widehat{ACB} = 45^o$.<br\/><\/span>","select":[" A. $\\widehat{AED} = 45^o$"," B. $\\widehat{AED} = 60^o$","C. $\\widehat{AED} = 90^o$","D. $\\widehat{AED} = 120^o$"],"hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> Ch\u1ee9ng minh $\\triangle$ vu\u00f4ng $ABD$ $\\backsim$ $\\triangle$ vu\u00f4ng $ACE$<br\/><b>B\u01b0\u1edbc 2:<\/b> Ch\u1ee9ng minh $\\triangle{ADE}$ $\\backsim$ $\\triangle{ABC}$<\/span><br\/> <span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv3/img\/H8C3B5_K104.png' \/><\/center><br\/> $\\blacktriangleright$ $BD$, $CE$ l\u1ea7n l\u01b0\u1ee3t l\u00e0 \u0111\u01b0\u1eddng cao c\u1ee7a $\\triangle{ABC}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\widehat{AEC} = \\widehat{ADB} = 90^o$ <br\/>$\\blacktriangleright$ X\u00e9t $\\triangle$ vu\u00f4ng $ABD$ v\u00e0 $\\triangle$ vu\u00f4ng $ACE$ c\u00f3: <br\/>$\\widehat{AEC} = \\widehat{ADB} = 90^o$ (ch\u1ee9ng minh tr\u00ean)<br\/>$\\widehat{A} $ chung<br\/>$\\Rightarrow$ $\\triangle$ vu\u00f4ng $ABD$ $\\backsim$ $\\triangle$ vu\u00f4ng $ACE$ (g\u00f3c - g\u00f3c)<br\/>$\\Rightarrow \\dfrac{AD}{AE} = \\dfrac{AB}{AC}$ (c\u1eb7p c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng t\u1ec9 l\u1ec7)<br\/>$\\Rightarrow \\dfrac{AD}{AB} = \\dfrac{AE}{AC}$<br\/> $\\blacktriangleright$ X\u00e9t $\\triangle{ADE}$ v\u00e0 $\\triangle{ABC}$ c\u00f3: <br\/>$\\widehat{A} $ chung<br\/> $\\dfrac{AD}{AB} = \\dfrac{AE}{AC}$ (ch\u1ee9ng minh tr\u00ean) <br\/>$\\Rightarrow \\triangle{ADE}$ $\\backsim$ $\\triangle{ABC}$ (c\u1ea1nh-g\u00f3c-c\u1ea1nh)<br\/>$\\Rightarrow \\widehat{AED} = \\widehat{ACB}$ (c\u1eb7p g\u00f3c t\u01b0\u01a1ng \u1ee9ng)<br\/> M\u00e0 $\\widehat{ACB} = 45^o$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\widehat{AED} = 45^o$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0<span class='basic_pink'> B. $\\widehat{AED} = 45^o$<\/span> <\/span> <br\/><\/span> ","column":2}]}],"id_ques":1794},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":10,"ques":"<span class='basic_left'>Cho h\u00ecnh v\u1ebd nh\u01b0 sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv3/img\/H8C3B5_K105.png' \/><\/center><br\/>T\u00ednh $BN, MN$.<\/span>","select":["A. $BN = 10$; $MN = 8$","B. $BN = 9$; $MN = 8$","C. $BN = 8$; $MN = 6$","D. $BN = 12$; $MN = 10$"],"hint":"Ch\u1ee9ng minh $MN \/\/ AC$. T\u1eeb \u0111\u00f3 \u00e1p d\u1ee5ng h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00ed Ta-l\u00e9t \u0111\u1ec3 t\u00ednh $BN$ v\u00e0 $MN$.","explain":"<span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv3/img\/H8C3B5_K105.png' \/><\/center><br\/>Ta c\u00f3:<br\/>$\\left.\\begin{array}{l} MN \\perp AB \\text{(gi\u1ea3 thi\u1ebft)}\\\\ AC \\perp AB \\text{(gi\u1ea3 thi\u1ebft)} \\end{array} \\right\\}$ $\\Rightarrow MN \/\/ AC$ (t\u00ednh ch\u1ea5t t\u1eeb vu\u00f4ng g\u00f3c \u0111\u1ebfn song song) <br\/>X\u00e9t $\\triangle ABC$ c\u00f3: $MN \/\/ AC$ (ch\u1ee9ng minh tr\u00ean)<br\/> $\\Rightarrow \\dfrac{BM}{BA}=\\dfrac{BN}{BC} = \\dfrac{MN}{AC}$ (h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00ed Ta-l\u00e9t)<br\/>$\\Rightarrow \\dfrac{6}{9}=\\dfrac{BN}{15} = \\dfrac{MN}{12}$<br\/> $\\Rightarrow$ $\\begin{cases}BN = \\dfrac{6.15}{9} = 10 \\\\ MN = \\dfrac{6.12}{9} = 8\\end{cases}$ <br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>A. $BN = 10$ v\u00e0 $MN = 8$<\/span><\/span> <br\/><\/span> ","column":2}]}],"id_ques":1795},{"time":24,"part":[{"title":"Ch\u1ecdn <u>nh\u1eefng<\/u> \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"Ch\u1ecdn \u0111\u01b0\u1ee3c nhi\u1ec1u \u0111\u00e1p \u00e1n","temp":"checkbox","correct":[["1","4"]],"list":[{"point":10,"img":"","ques":"Cho c\u00e1c c\u1eb7p tam gi\u00e1c c\u00f3 c\u00e1c c\u1ea1nh c\u00f3 \u0111\u1ed9 d\u00e0i sau \u0111\u00e2y<br\/><b> H\u00e3y ch\u1ecdn nh\u1eefng c\u1eb7p tam gi\u00e1c \u0111\u1ed3ng d\u1ea1ng.<\/b>","hint":"","column":2,"number_true":2,"select":["A. 1,5cm; 3cm; 4cm v\u00e0 4,5cm; 9cm; 12cm","B. 2cm; 5cm; 6cm v\u00e0 4cm; 12cm; 10cm ","C. 3cm; 4cm; 5cm v\u00e0 6cm; 8cm; 12cm","D. 2cm; 4cm; 5cm v\u00e0 4cm; 8cm; 10cm"],"explain":"\u0110\u00e1p \u00e1n $A$ \u0111\u00fang v\u00ec: $\\dfrac{1,5}{4,5} = \\dfrac{3}{9} = \\dfrac{4}{12}$ <br\/>\u0110\u00e1p \u00e1n $B$ sai v\u00ec: $\\dfrac{2}{4} \\neq \\dfrac{5}{12} \\neq \\dfrac{6}{10}$<br\/>\u0110\u00e1p \u00e1n $C$ sai v\u00ec: $\\dfrac{3}{6} = \\dfrac{4}{8} \\neq \\dfrac{5}{12}$<br\/>\u0110\u00e1p \u00e1n $D$ \u0111\u00fang v\u00ec: $\\dfrac{2}{4} = \\dfrac{4}{8} = \\dfrac{5}{10}$"}]}],"id_ques":1796},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":10,"ques":"<span class='basic_left'>Cho h\u00ecnh v\u1ebd nh\u01b0 sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv3/img\/H8C3B5_K106.png' \/><\/center><br\/><b>H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t<\/b><\/span>","select":["A. $\\widehat{ABD} = \\widehat{ACB}$","B. $\\widehat{ABD} > \\widehat{ACB}$","C. $\\widehat{ABD} < \\widehat{ACB}$"],"hint":"","explain":"<span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv3/img\/H8C3B5_K106.png' \/><\/center><br\/>X\u00e9t $\\triangle{ABC}$ v\u00e0 $\\triangle{ADB}$ c\u00f3: <br\/>$\\widehat{A} $ chung<br\/> $\\dfrac{AD}{AB} = \\dfrac{AB}{AC}$ (v\u00ec $\\dfrac{6}{12} = \\dfrac{12}{24}$)<br\/>$\\Rightarrow \\triangle{ABC}$ $\\backsim$ $\\triangle{ADB}$ (c\u1ea1nh-g\u00f3c-c\u1ea1nh)<br\/>$\\Rightarrow \\widehat{ABD} = \\widehat{ACB}$ (c\u1eb7p g\u00f3c t\u01b0\u01a1ng \u1ee9ng) <br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>A. $\\widehat{ABD} = \\widehat{ACB}$<\/span><\/span> <br\/><\/span> ","column":3}]}],"id_ques":1797},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["="],["="]]],"list":[{"point":10,"width":50,"content":"","type_input":"","ques":"<span class='basic_left'>Cho tam gi\u00e1c nh\u1ecdn $ABC$, c\u00e1c \u0111\u01b0\u1eddng cao $AD, BE, CF$ c\u1eaft nhau t\u1ea1i $H$. So s\u00e1nh $HA.HD$; $HB.HE$ v\u00e0 $HC.HF$<br\/> <b>\u0110\u00e1p \u00e1n:<\/b> $HA.HD$ _input_ $HB.HE$ _input_ $HC.HF$<\/span> ","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> Ch\u1ee9ng minh $\\triangle{AHF}$ $\\backsim$ $\\triangle{CHD}$<br\/><b>B\u01b0\u1edbc 2:<\/b> Ch\u1ee9ng minh $\\triangle{AHE}$ $\\backsim$ $\\triangle{BHD}$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv3/img\/H8C3B5_K107.png' \/><\/center><br\/>$\\blacktriangleright$ X\u00e9t $\\triangle$ vu\u00f4ng $AHF$ v\u00e0 $\\triangle$ vu\u00f4ng $CHD$ c\u00f3: <br\/>$\\widehat{AHF} = \\widehat{CHD}$ (c\u1eb7p g\u00f3c \u0111\u1ed1i \u0111\u1ec9nh)<br\/>$\\Rightarrow$ $\\triangle$ vu\u00f4ng $AHF$ $\\backsim$ $\\triangle$ vu\u00f4ng $CHD$ (g\u00f3c - g\u00f3c)<br\/>$\\Rightarrow \\dfrac{AH}{CH} = \\dfrac{HF}{HD}$ (c\u1eb7p c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng t\u1ec9 l\u1ec7)<br\/>$\\Rightarrow HA.HD = HC.HF$ <b>(1)<\/b><br\/>$\\blacktriangleright$ X\u00e9t $\\triangle$ vu\u00f4ng $AHE$ v\u00e0 $\\triangle$ vu\u00f4ng $BHD$ c\u00f3: <br\/>$\\widehat{AHE} = \\widehat{BHD}$ (c\u1eb7p g\u00f3c \u0111\u1ed1i \u0111\u1ec9nh)<br\/>$\\Rightarrow$ $\\triangle$ vu\u00f4ng $AHE$ $\\backsim$ $\\triangle$ vu\u00f4ng $BHD$ (g\u00f3c - g\u00f3c)<br\/>$\\Rightarrow \\dfrac{HA}{HB} = \\dfrac{HE}{HD}$ (c\u1eb7p c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng t\u1ec9 l\u1ec7)<br\/>$\\Rightarrow HA.HD = HB.HE$ <b>(2)<\/b><br\/>T\u1eeb (1) v\u00e0 (2) $\\Rightarrow HA.HD = HB.HE = HC.HF$<br\/>V\u1eady c\u00e1c d\u1ea5u c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u1ea7n l\u01b0\u1ee3t l\u00e0 <span class='basic_pink'>\"=; =\"<\/span> "}]}],"id_ques":1798},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":" <span class='basic_left'> Cho $\\triangle{ABC}$ vu\u00f4ng t\u1ea1i $A$. Tr\u00ean c\u1ea1nh $BC$ l\u1ea5y \u0111i\u1ec3m $K$, t\u1eeb $K$ k\u1ebb \u0111\u01b0\u1eddng th\u1eb3ng song song v\u1edbi $AC$ c\u1eaft $AB$ t\u1ea1i $I$. Bi\u1ebft $BI = 4cm, AB = 12cm$ v\u00e0 $S_{\\triangle{ABC}} = 54m^2$. T\u00ednh $S_{\\triangle{IBK}}$<\/span>","select":[" A. $S_{\\triangle{IBK}} = 4cm^2$"," B. $S_{\\triangle{IBK}} = 5cm^2$","C. $S_{\\triangle{IBK}} = 6cm^2$","D. $S_{\\triangle{IBK}} = 7cm^2$"],"hint":"Ch\u1ee9ng minh $\\triangle{BIK} \\backsim \\triangle{BAC}$, t\u1eeb \u0111\u00f3 suy ra $\\dfrac{S_{\\triangle{BIK}}}{S_{\\triangle{BAC}}}$","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv3/img\/H8C3B5_K108.png' \/><\/center><br\/>Ta c\u00f3:<br\/>$IK \/\/ AC$ (gi\u1ea3 thi\u1ebft)<br\/>$AB \\bot AC$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow$ $IK \\bot AB$ (\u0111\u1ecbnh l\u00ed t\u1eeb vu\u00f4ng g\u00f3c \u0111\u1ebfn song song)<br\/>Hay $\\widehat{BIK} = 90^o$<br\/>X\u00e9t $\\triangle$ vu\u00f4ng $BIK$ v\u00e0 $\\triangle$ vu\u00f4ng $BAC$ c\u00f3:<br\/>$\\widehat{BIK} = \\widehat{BAC}$ (c\u00f9ng $ = 90^o$)<br\/>$\\widehat{B}$ chung<br\/>$\\Rightarrow$ $\\triangle$ vu\u00f4ng $BIK$ $\\backsim$ $\\triangle$ vu\u00f4ng $BAC$ (g\u00f3c - g\u00f3c)<br\/>$\\Rightarrow \\left(\\dfrac{BI}{BA}\\right)^2 = \\dfrac{S_{\\triangle{BIK}}}{S_{\\triangle{BAC}}} $ hay $ \\dfrac{S_{\\triangle{BIK}}}{S_{\\triangle{BAC}}} = \\left(\\dfrac{4}{12}\\right)^2 = \\dfrac{1}{9}$ <br\/>$\\Rightarrow S_{\\triangle{BIK}} = \\dfrac{S_{\\triangle{BAC}}}{9} = \\dfrac{54}{9} = 6 (\\text{cm}^2)$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>C. $S_{\\triangle{IBK}} = 6 (\\text{cm}^2)$<\/span><br\/><span class='basic_left'><span class='basic_green'>Nh\u1eadn x\u00e9t:<\/span><br\/>T\u1ec9 s\u1ed1 di\u1ec7n t\u00edch c\u1ee7a hai tam gi\u00e1c \u0111\u1ed3ng d\u1ea1ng b\u1eb1ng t\u1ec9 s\u1ed1 \u0111\u1ed3ng d\u1ea1ng<\/span> <br\/><br\/>","column":2}]}],"id_ques":1799}],"lesson":{"save":0,"level":3}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý