đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" Vi\u1ebft t\u1ec9 s\u1ed1 c\u1ee7a c\u1eb7p \u0111o\u1ea1n th\u1eb3ng sau: $AB$ = $90cm$; $CD$ = $80cm$ ","select":[" A. $ \\dfrac{AB}{CD}=\\dfrac{90}{80}=\\dfrac{9}{8}$ "," B. $\\dfrac{AB}{CD}=\\dfrac{80}{90}=\\dfrac{8}{9}$"],"explain":" <span class='basic_left'>T\u1ec9 s\u1ed1 c\u1ee7a hai \u0111o\u1ea1n th\u1eb3ng $AB$ v\u00e0 $CD$ l\u00e0:<br\/>$\\dfrac{AB}{CD}=\\dfrac{90}{80}=\\dfrac{9}{8}$<br\/>V\u1eady ta ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> A. $ \\dfrac{AB}{CD}=\\dfrac{90}{80}=\\dfrac{9}{8}$<\/span><\/span>","column":2}]}],"id_ques":1770},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":" Hai \u0111o\u1ea1n th\u1eb3ng $AB = 18cm$, $CD = 40cm$ t\u1ec9 l\u1ec7 v\u1edbi hai \u0111o\u1ea1n th\u1eb3ng $A\u2019B\u2019 = 36cm$ v\u00e0 $C\u2019D\u2019$. \u0110o\u1ea1n th\u1eb3ng $C\u2019D\u2019$ c\u00f3 \u0111\u1ed9 d\u00e0i (theo \u0111\u01a1n v\u1ecb $cm$) l\u00e0: ","select":[" A. $16,2$ "," B. $60$","C. $80$","D. $100$"],"explain":" <span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>S\u1eed d\u1ee5ng \u0111\u1ecbnh ngh\u0129a \u0111o\u1ea1n th\u1eb3ng t\u1ec9 l\u1ec7<\/span> <br\/><span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>Hai \u0111o\u1ea1n th\u1eb3ng $AB$, $CD$ t\u1ec9 l\u1ec7 v\u1edbi hai \u0111o\u1ea1n th\u1eb3ng $A\u2019B\u2019$ v\u00e0 $C\u2019D\u2019$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{AB}{CD}=\\dfrac{A'B'}{C'D'}$ hay $\\dfrac{18}{40}=\\dfrac{36}{C'D'}$<br\/>$\\Rightarrow C'D'=\\dfrac{40.36}{18}=80 \\text{(cm)}$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>C. $80$<\/span>","column":2}]}],"id_ques":1771},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" Cho bi\u1ebft \u0111\u1ed9 d\u00e0i c\u1ee7a $AB$ g\u1ea5p $7$ l\u1ea7n \u0111\u1ed9 d\u00e0i c\u1ea1nh $CD$ v\u00e0 \u0111\u1ed9 d\u00e0i c\u1ee7a $A\u2019B\u2019$ g\u1ea5p $9$ l\u1ea7n \u0111\u1ed9 d\u00e0i c\u1ee7a $CD$. T\u00ednh t\u1ec9 s\u1ed1 c\u1ee7a hai \u0111o\u1ea1n th\u1eb3ng $AB$ v\u00e0 $A\u2019B\u2019$. ","select":[" A. $\\dfrac{7}{9}$ "," B. $\\dfrac{9}{7}$","C. $\\dfrac{7}{16}$","D. $\\dfrac{16}{7}$"],"explain":" <span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/>S\u1eed d\u1ee5ng \u0111\u1ecbnh ngh\u0129a t\u1ec9 s\u1ed1 c\u1ee7a hai \u0111o\u1ea1n th\u1eb3ng<\/span> <br\/><span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> Theo \u0111\u1ec1 b\u00e0i ta c\u00f3:<br\/>$AB = 7.CD$<br\/>$A\u2019B\u2019 = 9.CD$<br\/>T\u1ec9 s\u1ed1 c\u1ee7a hai \u0111o\u1ea1n th\u1eb3ng $AB$ v\u00e0 $A\u2019B\u2019$ l\u00e0:<br\/>$\\dfrac{AB}{A'B'}=\\dfrac{7.CD}{9.CD}=\\dfrac{7}{9}$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>A. $\\dfrac{7}{9}$<\/span>","column":2}]}],"id_ques":1772},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":" Cho $\\triangle ABC$, tr\u00ean c\u1ea1nh $AC$ l\u1ea5y \u0111i\u1ec3m $D$ sao cho $AD = 6cm$, $DC = 2cm$. Qua $D$ k\u1ebb $DE \/\/ AB$ ($E \\in BC$). Bi\u1ebft $CB = 12cm$. T\u00ednh \u0111\u1ed9 d\u00e0i c\u1ee7a $CE$.","select":[" A. $2,5cm$ "," B. $3cm$","C. $4cm$","D. $6cm$"],"hint":" T\u00ednh \u0111\u1ed9 d\u00e0i c\u1ea1nh AC sau \u0111\u00f3 s\u1eed d\u1ee5ng \u0111\u1ecbnh l\u00fd Ta-l\u00e9t \u0111\u1ec3 t\u00ecm $CE$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> T\u00ednh $AC$<br\/><b>B\u01b0\u1edbc 2:<\/b> \u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00ed Ta-l\u00e9t \u0111\u1ec3 \u0111\u01b0a ra h\u1ec7 th\u1ee9c: $\\dfrac{CD}{CA} = \\dfrac{CE}{CB}$<br\/><b>B\u01b0\u1edbc 3:<\/b> T\u1eeb h\u1ec7 th\u1ee9c \u1edf b\u01b0\u1edbc 2 t\u00ednh $CE$.<br\/><span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D101.png' \/><\/center><br\/>Ta c\u00f3: $D \\in AC$ (gi\u1ea3 thi\u1ebft)<br\/> $\\Rightarrow AC = AD + DC = 6 + 2 = 8 \\text{(cm)}$<br\/>V\u00ec $DE \/\/ AB$ (gi\u1ea3 thi\u1ebft), theo \u0111\u1ecbnh l\u00ed Ta-l\u00e9t ta c\u00f3:<br\/>$\\dfrac{CD}{CA} = \\dfrac{CE}{CB}$ hay $\\dfrac{2}{8} = \\dfrac{CE}{12}$<br\/>$\\Rightarrow CE = \\dfrac{2.12}{8} = 3 \\text{(cm)}$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>B. $3cm$<\/span>","column":2}]}],"id_ques":1773},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" Cho h\u00ecnh v\u1ebd sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D102.png' \/><\/center><br\/>Bi\u1ebft $\\dfrac{ME}{MN} = \\dfrac{3}{5}$. T\u00ednh $NP$.","select":[" A. $NP = 7cm$ "," B. $NP = 5cm$","C. $NP = 9cm$","D. $NP = 12cm$"],"hint":" S\u1eed d\u1ee5ng h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00fd Ta-l\u00e9t","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D102.png' \/><\/center><br\/> $\\triangle MNP$ c\u00f3:<br\/>$\\left.\\begin{array}{l} EF \/\/ NP \\text{(gi\u1ea3 thi\u1ebft)}\\\\ E \\in MN; F \\in MP \\text{(gi\u1ea3 thi\u1ebft)} \\end{array} \\right\\}$ <br\/> $\\Rightarrow \\dfrac{ME}{MN} = \\dfrac{EF}{NP}$ (h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00ed Ta-l\u00e9t)<br\/> $\\Rightarrow \\dfrac{3}{5} = \\dfrac{4,2}{NP}$<br\/>$\\Rightarrow NP = \\dfrac{5.4,2}{3} = 7 \\text{(cm)}$<br\/><br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>A. $NP = 7cm$<\/span><\/span>","column":2}]}],"id_ques":1774},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":" T\u00ednh \u0111\u1ed9 d\u00e0i c\u1ee7a $x$ trong h\u00ecnh sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D103.png' \/><\/center>","select":[" A. $8$ "," B. $8,6$","C. $10$","D. $12$"],"hint":"S\u1eed d\u1ee5ng h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00ed Ta-l\u00e9t.","explain":"<span class='basic_left'>X\u00e9t $\\triangle EFG$ c\u00f3:<br\/>$\\left.\\begin{array}{l} AB \/\/ FG \\text{(gi\u1ea3 thi\u1ebft)}\\\\ A \\in EG; B \\in EF \\end{array} \\right\\}$ $\\Rightarrow \\dfrac{AE}{EG} = \\dfrac{BE}{EF}$ (h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00fd Ta-l\u00e9t)<br\/> $\\Rightarrow \\dfrac{4}{x} = \\dfrac{3}{9}$<br\/>$\\Rightarrow x = \\dfrac{4.9}{3} = 12 $<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>D. $12$<\/span><\/span> ","column":2}]}],"id_ques":1775},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":" <span class='basic_left'>T\u00ednh $x$ trong h\u00ecnh v\u1ebd sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D104.png' \/><\/center><br\/><\/span>","select":[" A. $x = 6$"," B. $x = 4,75$","C. $x = 5,25$","D. $x = 5,75$"],"explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D104.png' \/><\/center><br\/> $\\triangle MNP$ c\u00f3:<br\/> $NH$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{MNP}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{NM}{NP} = \\dfrac{HM}{HP}$ (t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{4}{7} = \\dfrac{3}{x}$<br\/> $\\Rightarrow x = \\dfrac{3.7}{4} = 5,25$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> C. $x = 5,25$<\/span>","column":2}]}],"id_ques":1776},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":" <span class='basic_left'>T\u00ednh \u0111\u1ed9 d\u00e0i c\u1ea1nh $AB$ v\u00e0 $AC$ trong h\u00ecnh v\u1ebd sau: <br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D105.png' \/><\/center><\/span>","select":[" A. $AC = 15cm; AB = 20cm$"," B. $AC = 20cm; AB = 25cm$","C. $AC = 25cm; AB = 21cm$","D. $AC = 28cm; AB = 21cm$"],"explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D105.png' \/><\/center><br\/>$\\triangle ABC$ vu\u00f4ng t\u1ea1i $A$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow AB^2 + AC^2 = BC^2$ ( \u0111\u1ecbnh l\u00ed Py-ta-go)<br\/> $\\Rightarrow AB^2 + AC^2 = (DB + DC)^2 = (15 + 20)^2 = 35^2 = 1225$<br\/> $\\triangle ABC$ c\u00f3:<br\/> $AD$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{BAC}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{AB}{AC} = \\dfrac{DB}{DC}$ (t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{AB}{AC} = \\dfrac{15}{20} = \\dfrac{3}{4}$<br\/> $\\Rightarrow \\dfrac{AB}{3} = \\dfrac{AC}{4 }$<br\/> $\\Rightarrow \\dfrac{AB^2}{9} = \\dfrac{AC^2}{16}$<br\/>\u00c1p d\u1ee5ng t\u00ednh ch\u1ea5t d\u00e3y t\u1ec9 s\u1ed1 b\u1eb1ng nhau ta c\u00f3:<br\/>$\\dfrac{AB^2}{9} = \\dfrac{AC^2}{16} = \\dfrac{AB^2 + AC^2}{9 + 16} = \\dfrac{1225}{25} = 49$ <br\/>$\\Rightarrow$ $\\begin{cases}AC^2 = 16.49 = 784\\\\ AB^2 = 9. 49 = 441\\end{cases}$<br\/>$\\Rightarrow$ $\\begin{cases}AC = 28 \\text{(cm)} \\\\ AB = 21 \\text{(cm)} \\end{cases}$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> D. $AC = 28cm; AB = 21cm$<\/span>","column":2}]}],"id_ques":1777},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["15"],["18"],["27"]]],"list":[{"point":5,"width":50,"content":"","type_input":"","ques":"<span class='basic_left'>Bi\u1ebft $\\triangle{ABC} \\backsim \\triangle{A'B'C'}$ v\u00e0 \u0111\u1ed9 d\u00e0i c\u00e1c c\u1ea1nh $\\triangle{ABC}$ l\u00e0 $AB = 5cm$; $AC = 6cm$; $BC = 9cm$. T\u00ednh \u0111\u1ed9 d\u00e0i c\u00e1c c\u1ea1nh $\\triangle{A'B'C'}$ bi\u1ebft chu vi tam gi\u00e1c $A'B'C'$ b\u1eb1ng $60cm$. <br\/><b>\u0110\u00e1p \u00e1n:<\/b> $A'B'$ = _input_ ($cm$); $A'C'$ = _input_ ($cm$); $B'C'$ = _input_ ($cm$)<\/span>","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> T\u1eeb $\\triangle{ABC} \\backsim \\triangle{A'B'C'} $ t\u00ecm t\u1ec9 s\u1ed1 \u0111\u1ed9 d\u00e0i c\u00e1c c\u1ea1nh c\u1ee7a hai tam gi\u00e1c<br\/><b>B\u01b0\u1edbc 2:<\/b> T\u1eeb b\u01b0\u1edbc 1 \u00e1p d\u1ee5ng t\u00ednh ch\u1ea5t d\u00e3y t\u1ec9 s\u1ed1 b\u1eb1ng nhau c\u1ee7a tam gi\u00e1c \u0111\u1ec3 t\u00ecm $A'B', A'C', B'C'$<\/span><br\/><span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/>$\\triangle{ABC} \\backsim \\triangle{A'B'C'} $ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{A'B'}{AB} = \\dfrac{B'C'}{BC} = \\dfrac{A'C'}{AC}$ hay $\\dfrac{A'B'}{5} = \\dfrac{B'C'}{9} = \\dfrac{A'C'}{6}$<br\/>\u00c1p d\u1ee5ng t\u00ednh ch\u1ea5t d\u00e3y t\u1ec9 s\u1ed1 b\u1eb1ng nhau, ta c\u00f3:<br\/> $\\dfrac{A'B'}{5} = \\dfrac{B'C'}{9} = \\dfrac{A'C'}{6} = \\dfrac{A'B' + B'C' + A'C'}{5 + 6 + 9} = \\dfrac{60}{20} = 3$<br\/>Do \u0111\u00f3<br\/>$A'B' = 3.5 = 15$ ($cm$)<br\/>$A'C' = 3.6 = 18$ ($cm$)<br\/>$B'C' = 3.9 = 27$ ($cm$)<br\/>V\u1eady c\u00e1c s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u1ea7n l\u01b0\u1ee3t l\u00e0: <span class='basic_pink'>15; 18; 27<\/span>"}]}],"id_ques":1778},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" <span class='basic_left'> Cho tam gi\u00e1c $ABC$ c\u00f3 $AB = 8cm, AC = 16cm$. \u0110i\u1ec3m $D$ thu\u1ed9c c\u1ea1nh $AC$ sao cho $\\widehat{ABD} = \\widehat{C}$. T\u00ednh \u0111\u1ed9 d\u00e0i c\u1ea1nh $AD$.<br\/><\/span>","select":[" A. $AD = 4cm$"," B. $AD = 4,5cm$","C. $AD = 5cm$","D. $AD = 5,5cm$"],"hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> Ch\u1ee9ng minh $\\triangle{ABD} \\backsim \\triangle{ACB}$<br\/><b>B\u01b0\u1edbc 2:<\/b> T\u1eeb b\u01b0\u1edbc 1 suy ra c\u00e1c c\u1eb7p c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng t\u1ec9 l\u1ec7<br\/><b>B\u01b0\u1edbc 3:<\/b> T\u00ednh $AD$<\/span> <br\/><span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D106.png' \/><\/center><br\/>X\u00e9t $\\triangle{ABD}$ v\u00e0 $\\triangle{ACB}$ c\u00f3:<br\/>$\\widehat{ABD} = \\widehat{C}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\widehat{A}$ chung<br\/>$\\Rightarrow$ $\\triangle{ABD} \\backsim \\triangle{ACB}$ (g-g)<br\/>$\\Rightarrow \\dfrac{AD}{AB} = \\dfrac{AB}{AC}$ (c\u1eb7p c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng t\u1ec9 l\u1ec7) <br\/>$\\Rightarrow \\dfrac{AD}{8} = \\dfrac{8}{16}$<br\/>$\\Rightarrow AD = \\dfrac{8.8}{16} = 4 \\text{(cm)}$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>A. $AD = 4cm$<\/span><\/span> <br\/><\/span><br\/>","column":2}]}],"id_ques":1779},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["6"]]],"list":[{"point":5,"width":50,"content":"","type_input":"","ques":"<span class='basic_left'> Cho h\u00ecnh v\u1ebd nh\u01b0 sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D107.png' \/><\/center><br\/>T\u00ednh \u0111\u1ed9 d\u00e0i c\u1ea1nh $DE$<br\/><b>\u0110\u00e1p \u00e1n:<\/b> $DE =$ _input_ ($cm$)<\/span>","hint":"S\u1eed d\u1ee5ng tr\u01b0\u1eddng h\u1ee3p \u0111\u1ed3ng d\u1ea1ng th\u1ee9 hai: c\u1ea1nh-g\u00f3c-c\u1ea1nh. ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> Ch\u1ee9ng minh $\\triangle{ADE} \\backsim \\triangle{ACB}$ t\u1eeb \u0111\u00f3 suy ra c\u00e1c c\u1eb7p c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng t\u1ec9 l\u1ec7<br\/><b>B\u01b0\u1edbc 2:<\/b> T\u1eeb b\u01b0\u1edbc 1 suy ra \u0111\u1ed9 d\u00e0i c\u1ea1nh $DE$<\/span><br\/><span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D107.png' \/><\/center><br\/>X\u00e9t $\\triangle{ADE}$ v\u00e0 $\\triangle{ACB}$ c\u00f3:<br\/>$\\widehat{A}$ chung<br\/>$\\dfrac{AE}{EB} = \\dfrac{AD}{AC}$ (v\u00ec $\\dfrac{5}{10} = \\dfrac{4}{8}$)<br\/> $\\Rightarrow$ $\\triangle{ADE} \\backsim \\triangle{ACB}$ (c\u1ea1nh-g\u00f3c-c\u1ea1nh)<br\/>$\\Rightarrow \\dfrac{AD}{AC} = \\dfrac{DE}{BC}$ (c\u1eb7p c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng t\u1ec9 l\u1ec7) <br\/>$\\Rightarrow DE = \\dfrac{AD.BC}{AC} = \\dfrac{4.12}{8} = 6 \\text{(cm)}$ <br\/>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 <span class='basic_pink'>6<\/span>"}]}],"id_ques":1780},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":10,"ques":"<span class='basic_left'>Cho h\u00ecnh v\u1ebd nh\u01b0 sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D108.png' \/><\/center><br\/>T\u00ednh $BN, MN$.<\/span>","select":["A. $BN = 5$; $MN = 3$","B. $BN = 3$; $MN = 5$","C. $BN = 4$; $MN = 3$","D. $BN = 5$; $MN = 4$"],"hint":"Ch\u1ee9ng minh $MN \/\/ AC$. T\u1eeb \u0111\u00f3 \u00e1p d\u1ee5ng h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00ed Ta-l\u00e9t \u0111\u1ec3 t\u00ednh $BN$ v\u00e0 $MN$.","explain":"<span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D108.png' \/><\/center><br\/>Ta c\u00f3:<br\/>$\\left.\\begin{array}{l} MN \\perp AB \\text{(gi\u1ea3 thi\u1ebft)}\\\\ AC \\perp AB \\text{(gi\u1ea3 thi\u1ebft)} \\end{array} \\right\\}$ $\\Rightarrow MN \/\/ AC$ (t\u00ednh ch\u1ea5t t\u1eeb vu\u00f4ng g\u00f3c \u0111\u1ebfn song song) <br\/>X\u00e9t $\\triangle ABC$ c\u00f3: $MN \/\/ AC$ (ch\u1ee9ng minh tr\u00ean)<br\/> $\\Rightarrow \\dfrac{BM}{BA}=\\dfrac{BN}{BC} = \\dfrac{MN}{AC}$ (h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00ed Ta-l\u00e9t)<br\/>$\\Rightarrow \\dfrac{4}{12}=\\dfrac{BN}{15} = \\dfrac{MN}{9}$<br\/> $\\Rightarrow$ $\\begin{cases}BN = \\dfrac{4.15}{12} = 5 \\\\ MN = \\dfrac{4.9}{12} = 3\\end{cases}$ <br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>A. $BN = 5$ v\u00e0 $MN = 3$<\/span><\/span> <br\/><\/span> ","column":2}]}],"id_ques":1781},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["6"]]],"list":[{"point":5,"width":50,"content":"","type_input":"","ques":"<span class='basic_left'> Cho h\u00ecnh v\u1ebd nh\u01b0 sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D109.png' \/><\/center><br\/>T\u00ednh $S_{\\triangle{MBN}}$, bi\u1ebft $S_{\\triangle{ABC}} = 54 \\text{cm}^2$<br\/><b>\u0110\u00e1p \u00e1n:<\/b> $S_{\\triangle{MBN}}$ _input_ ($cm^2$)<\/span>","hint":"Hai tam gi\u00e1c \u0111\u1ed3ng d\u1ea1ng c\u00f3 t\u1ec9 s\u1ed1 di\u1ec7n t\u00edch b\u1eb1ng b\u00ecnh ph\u01b0\u01a1ng t\u1ec9 s\u1ed1 \u0111\u1ed3ng d\u1ea1ng.","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> Ch\u1ee9ng minh $\\triangle{MBN} \\backsim \\triangle{ABC}$<br\/><b>B\u01b0\u1edbc 2:<\/b> T\u00ednh $S_{\\triangle{MBN}}$<\/span><br\/><span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D109.png' \/><\/center><br\/>Ta c\u00f3: <br\/>$\\left.\\begin{array}{l} MN \\perp AB \\text{(gi\u1ea3 thi\u1ebft)}\\\\ AC \\perp AB \\text{(gi\u1ea3 thi\u1ebft)} \\end{array} \\right\\}$ $\\Rightarrow MN \/\/ AC$ (t\u00ednh ch\u1ea5t t\u1eeb vu\u00f4ng g\u00f3c \u0111\u1ebfn song song) <br\/> X\u00e9t $\\triangle ABC$ c\u00f3: $MN \/\/ AC$ (ch\u1ee9ng minh tr\u00ean) <br\/>$\\Rightarrow \\triangle{MBN} \\backsim \\triangle{ABC}$<br\/>$\\Rightarrow \\dfrac{S_{\\triangle{MBN}}}{S_{\\triangle{ABC}}} = \\left(\\dfrac{MB}{AB}\\right)^2 = \\left(\\dfrac{4}{12}\\right)^2 = \\dfrac{1}{9}$<br\/>$\\Rightarrow S_{\\triangle{MBN}} = \\dfrac{1}{9}.S_{\\triangle{ABC}} = \\dfrac{1}{9}.54 = 6 (\\text{cm}^2)$ <br\/>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 <span class='basic_pink'>6<\/span>"}]}],"id_ques":1782},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":" <span class='basic_left'>T\u00ednh $x$, $y$ trong h\u00ecnh v\u1ebd sau, bi\u1ebft $HK \/\/ BC$: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D110.png' \/><\/center><br\/><\/span>","select":[" A. $x = 7,5cm; y = 15cm$"," B. $x = 15cm; y = 7,5cm$","C. $x = 8cm; y = 10cm$","D. $x = 9cm; y = 12cm$"],"hint":"S\u1eed d\u1ee5ng \u0111\u1ecbnh l\u00ed Ta-l\u00e9t t\u00ecm $y$, s\u1eed d\u1ee5ng t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u1ea7n gi\u00e1c c\u1ee7a tam gi\u00e1c t\u00ecm $x$.","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D110.png' \/><\/center><br\/> $\\triangle ABC$ c\u00f3: $HK \/\/ BC$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{AK}{KB} = \\dfrac{HA}{HC}$ (\u0111\u1ecbnh l\u00ed Ta-l\u00e9t) <br\/>$\\Rightarrow \\dfrac{4}{6} = \\dfrac{5}{y}$ $\\Rightarrow y = \\dfrac{5.6}{4} = 7,5 \\text{(cm)}$ <br\/>$\\triangle ABC$ c\u00f3: $BH$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{ABC}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\dfrac{BA}{BC} = \\dfrac{HA}{HC}$ (t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c)<br\/>$\\Rightarrow \\dfrac{4 + 6}{x} = \\dfrac{5}{7,5}$ $\\Rightarrow \\dfrac{10}{x} = \\dfrac{5}{7,5}$ $\\Rightarrow x = \\dfrac{10.7,5}{5} = 15 \\text{(cm)}$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> B. $x = 15cm; y = 7,5cm$<\/span>","column":2}]}],"id_ques":1783},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":"<span class='basic_left'>Cho h\u00ecnh v\u1ebd nh\u01b0 sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D111.png' \/><\/center><br\/>T\u00ednh $BN, MN$.<\/span>","select":["A. $BN = 3,75cm$; $MN = 2,25cm$","B. $BN = 4,25cm$; $MN = 3,75cm$","C. $BN = 5cm$; $MN = 6cm$","D. $BN = 6,25cm$; $MN = 3,75cm$"],"hint":"Ch\u1ee9ng minh $MN \/\/ AC$. T\u1eeb \u0111\u00f3 \u00e1p d\u1ee5ng h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00ed Ta-l\u00e9t \u0111\u1ec3 t\u00ednh $BN$ v\u00e0 $MN$.","explain":"<span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D111.png' \/><\/center><br\/>Ta c\u00f3:<br\/>$\\left.\\begin{array}{l} MN \\perp AB \\text{(gi\u1ea3 thi\u1ebft)}\\\\ AC \\perp AB \\text{(gi\u1ea3 thi\u1ebft)} \\end{array} \\right\\}$ $\\Rightarrow MN \/\/ AC$ (t\u00ednh ch\u1ea5t t\u1eeb vu\u00f4ng g\u00f3c \u0111\u1ebfn song song) <br\/>X\u00e9t $\\triangle ABC$ c\u00f3: $MN \/\/ AC$ (ch\u1ee9ng minh tr\u00ean)<br\/> $\\Rightarrow \\dfrac{BM}{BA}=\\dfrac{BN}{BC} = \\dfrac{MN}{AC}$ (h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00ed Ta-l\u00e9t)<br\/>$\\Rightarrow \\dfrac{5}{12}=\\dfrac{BN}{15} = \\dfrac{MN}{9}$<br\/> $\\Rightarrow$ $\\begin{cases}BN = \\dfrac{5.15}{12} = 6,25 \\text{(cm)} \\\\ MN = \\dfrac{5.9}{12} = 3,75 \\text{(cm)} \\end{cases}$ <br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>D. $BN = 6,25cm$ v\u00e0 $MN = 3,75cm$<\/span><\/span> <br\/><\/span> ","column":2}]}],"id_ques":1784},{"time":24,"part":[{"title":"Ch\u1ecdn <u>nh\u1eefng<\/u> \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"Ch\u1ecdn \u0111\u01b0\u1ee3c nhi\u1ec1u \u0111\u00e1p \u00e1n","temp":"checkbox","correct":[["1","2"]],"list":[{"point":5,"img":"","ques":"Cho c\u00e1c c\u1eb7p tam gi\u00e1c c\u00f3 c\u00e1c c\u1ea1nh c\u00f3 \u0111\u1ed9 d\u00e0i sau \u0111\u00e2y<br\/><b> H\u00e3y ch\u1ecdn nh\u1eefng c\u1eb7p tam gi\u00e1c \u0111\u1ed3ng d\u1ea1ng.<\/b>","hint":"","column":2,"number_true":2,"select":["A. 1,5cm; 2cm; 3cm v\u00e0 3cm; 4cm; 6cm","B. 2cm; 5cm; 6cm v\u00e0 4cm; 10cm; 12cm ","C. 3cm; 5cm; 7cm v\u00e0 6cm; 10cm; 12cm","D. 4cm; 9cm; 10cm v\u00e0 8cm; 15cm; 20cm"],"explain":"\u0110\u00e1p \u00e1n $A$ \u0111\u00fang v\u00ec: $\\dfrac{1,5}{3} = \\dfrac{2}{4} = \\dfrac{3}{6}$ <br\/>\u0110\u00e1p \u00e1n $B$ \u0111\u00fang v\u00ec: $\\dfrac{2}{4} = \\dfrac{5}{10} = \\dfrac{6}{12}$<br\/>\u0110\u00e1p \u00e1n $C$ sai v\u00ec: $\\dfrac{3}{6} = \\dfrac{5}{10} \\neq \\dfrac{5}{7} $<br\/>\u0110\u00e1p \u00e1n $D$ sai v\u00ec: $\\dfrac{4}{8} \\neq \\dfrac{9}{15} $"}]}],"id_ques":1785},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["20"]]],"list":[{"point":5,"width":50,"content":"","type_input":"","ques":"<span class='basic_left'>Cho h\u00ecnh v\u1ebd nh\u01b0 sau: <br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D112.png' \/><\/center><br\/> T\u00ednh \u0111\u1ed9 d\u00e0i c\u1ea1nh $AC$.<br\/><b>\u0110\u00e1p \u00e1n:<\/b> $AC = $ _input_ ($cm$)<\/span>","hint":"Ch\u1ee9ng minh $\\triangle$ vu\u00f4ng $ABH$ $\\backsim$ $\\triangle$ vu\u00f4ng $CAH$ $\\Rightarrow$ $AH$ $\\Rightarrow$ $AC$. ","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D112.png' \/><\/center><br\/>+) $\\triangle{ABH}$ vu\u00f4ng t\u1ea1i $H$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow$ $\\widehat{B} + \\widehat{BAH} = 90^o$ (hai g\u00f3c ph\u1ee5 nhau)<br\/>L\u1ea1i c\u00f3: $\\widehat{CAH} + \\widehat{BAH} = \\widehat{BAC} = 90^o$ <br\/>$\\Rightarrow \\widehat{B} = \\widehat{CAH}$<br\/>+) X\u00e9t $\\triangle{ABH}$ v\u00e0 $\\triangle{CAH}$ c\u00f3:<br\/>$\\widehat{B} = \\widehat{CAH}$ (ch\u1ee9ng minh tr\u00ean)<br\/>$\\widehat{AHC} = \\widehat{BHA}$ (c\u00f9ng b\u1eb1ng $90^o$)<br\/>$\\Rightarrow$ $\\triangle{ABH}$ $\\backsim$ $\\triangle{CAH}$ (g\u00f3c - g\u00f3c)<br\/>$\\Rightarrow$ $\\dfrac{AH}{CH} = \\dfrac{BH}{AH}$ (c\u1eb7p c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng t\u1ec9 l\u1ec7)<br\/>$\\Rightarrow$ $AH^2 = BH.CH = 9.16 = 144 \\Rightarrow AH = 12 \\text{(cm)}$<br\/>+) $\\triangle{ACH}$ vu\u00f4ng t\u1ea1i $H$ (gi\u1ea3 thi\u1ebft)<br\/> $\\Rightarrow AH^2 + CH^2 = AC^2$ (\u0111\u1ecbnh l\u00ed py-ta-go)<br\/> $\\Rightarrow AC^2 = 16^2 + 12^2 = 400 \\Rightarrow AC = 20 \\text{(cm)}$<br\/>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 <span class='basic_pink'>$20$<\/span> "}]}],"id_ques":1786},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["="]]],"list":[{"point":5,"width":50,"content":"","type_input":"","ques":"<span class='basic_left'>Cho tam gi\u00e1c $ABC$ c\u00f3 ba \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c $AD$, $BE$, $CF$<br\/>So s\u00e1nh $\\dfrac{FA}{FB}. \\dfrac{DB}{DC}. \\dfrac{EC}{EA}$ v\u1edbi $1$ <br\/><b>\u0110\u00e1p \u00e1n:<\/b> $\\dfrac{FA}{FB}. \\dfrac{DB}{DC}. \\dfrac{EC}{EA}$ _input_ $1$<\/span>","hint":"\u00c1p d\u1ee5ng t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D113.png' \/><\/center><br\/>\u00c1p d\u1ee5ng t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c trong tam gi\u00e1c $ABC$ c\u00f3:<br\/>$\\dfrac{FA}{FB} = \\dfrac{CA}{CB}$; $\\dfrac{DB}{DC} = \\dfrac{AB}{AC}$; $\\dfrac{EC}{EA} = \\dfrac{BC}{AB}$<br\/>$\\Rightarrow$ $\\dfrac{FA}{FB}. \\dfrac{DB}{DC}. \\dfrac{EC}{EA} = \\dfrac{CA}{CB}. \\dfrac{AB}{AC}. \\dfrac{BC}{AB} = 1$ <br\/>V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 <span class='basic_pink'>\"=\"<\/span> "}]}],"id_ques":1787},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["="]]],"list":[{"point":5,"width":50,"content":"","type_input":"","ques":"<span class='basic_left'>Cho h\u00ecnh thoi $ABCD$ c\u00f3 \u0111i\u1ec3m $M$ n\u1eb1m tr\u00ean c\u1ea1nh $AB$. C\u00e1c \u0111\u01b0\u1eddng th\u1eb3ng $DM$ v\u00e0 $BC$ c\u1eaft nhau t\u1ea1i $N$. So s\u00e1nh: $AB^2$ v\u00e0 $AM.CN$ <br\/><b>\u0110\u00e1p \u00e1n:<\/b> $AB^2$ _input_ $AM.CN$<\/span>","hint":"\u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00ed Ta-l\u00e9t.","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D114.png' \/><\/center><br\/>$\\blacktriangleright$ $ABCD$ l\u00e0 h\u00ecnh thoi (gi\u1ea3 thi\u1ebft)<br\/> $\\Rightarrow \\begin{cases}AB = BC = CD = AD \\\\AB \/\/ CD; AD \/\/ BC\\end{cases}$ (t\u00ednh ch\u1ea5t h\u00ecnh thoi)<br\/>$\\blacktriangleright$ $AB \/\/ CD$ (ch\u1ee9ng minh tr\u00ean); $N \\in BC$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow BN \/\/ AD$<br\/>$\\Rightarrow \\dfrac{AD}{BN} = \\dfrac{AM}{BM}$ (h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00ed Ta-l\u00e9t)<br\/>$\\Rightarrow \\dfrac{AD}{AD + BN} = \\dfrac{AM}{AM + BM}$<br\/> $\\Rightarrow \\dfrac{AB}{BC + BN} = \\dfrac{AM}{AB}$ (v\u00ec $AD = BC = AB$)<br\/>$\\Rightarrow \\dfrac{AB}{CN} = \\dfrac{AM}{AB}$<br\/> $\\Rightarrow AB^2 = AM.CN$ <br\/>V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 <span class='basic_pink'>\"=\"<\/span> <br\/><span class='basic_left'><span class='basic_green'>Nh\u1eadn x\u00e9t:<\/span><br\/>$ \\dfrac{a}{b} = \\dfrac{c}{d}$ $\\Rightarrow \\dfrac{a}{a + b} = \\dfrac{c}{c + d}$<\/span> <br\/><br\/>"}]}],"id_ques":1788},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":" <span class='basic_left'>Tam gi\u00e1c $ABC$ vu\u00f4ng t\u1ea1i $A$, \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c $BD$ chia c\u1ea1nh $AC$ th\u00e0nh c\u00e1c \u0111o\u1ea1n th\u1eb3ng $DA = 3cm, DC = 5cm$. T\u00ednh c\u00e1c \u0111\u1ed9 d\u00e0i $AB, BC$.<br\/><\/span>","select":[" A. $AB = 5cm; BC = 10cm$"," B. $AB = 6cm; BC = 10cm$","C. $AB = 4cm; BC = 8cm$","D. $AB = 6cm; BC = 12cm$"],"hint":"K\u1ebft h\u1ee3p t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c v\u00e0 \u0111\u1ecbnh l\u00ed Py-ta-go \u0111\u1ec3 t\u00ednh $AB, BC$.","explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai18/lv1/img\/H8C3B5_D115.png' \/><\/center><br\/>$\\blacktriangleright$ $BD$ l\u00e0 ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{ABC}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow$ $\\dfrac{AB}{BC} = \\dfrac{AD}{DC} = \\dfrac{3}{5}$ (t\u00ednh ch\u1ea5t \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a tam gi\u00e1c) <br\/>$\\blacktriangleright$ \u0110\u1eb7t $AB = 3k$, $BC = 5k$ ($k > 0$).<br\/>$\\blacktriangleright$ Tam gi\u00e1c $ABC$ vu\u00f4ng t\u1ea1i $A$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow$ $AB^2 + AC^2 = BC^2$ (\u0111\u1ecbnh l\u00ed Py-ta-go)<br\/>$\\Rightarrow BC^2 - AB^2 = AC^2 \\\\ \\Rightarrow 25k^2 - 9k^2 = (3 + 5)^2 \\\\ \\Rightarrow 16k^2 = 64 \\Rightarrow k^2 = 4 \\Rightarrow k = 2$<br\/>V\u1eady $AB = 3.2 = 6 \\text{(cm)}; BC = 5.2 = 10 \\text{(cm)}$ <br\/>\u0110\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> B. $AB = 6cm; BC = 10cm$<\/span>","column":2}]}],"id_ques":1789}],"lesson":{"save":0,"level":1}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý