đang tải bài tập bài
{"segment":[{"part":[{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":10,"ques":"K\u1ebft qu\u1ea3 ph\u00e9p nh\u00e2n $2{{x}^{3}}\\left( 3{{x}^{2}}-x+\\dfrac{1}{2} \\right)$ l\u00e0:","select":["A. $6x^5-2x^4+x^3$","B. $5x^5-2x^4+4x^3$","C. $6x^6-2x^3+x^3$ ","D. $6x^5-2x^3+4x^2$"],"hint":" Th\u1ef1c hi\u1ec7n ph\u00e9p nh\u00e2n \u0111\u01a1n th\u1ee9c v\u1edbi \u0111a th\u1ee9c: $A(B+C)=A.B+A.C$","explain":"<span class='basic_left'>Ta c\u00f3: <br\/> $2{{x}^{3}}\\left( 3{{x}^{2}}-x+\\dfrac{1}{2} \\right)=6{{x}^{5}}-2{{x}^{4}}+{{x}^{3}}$ <br\/> <span class='basic_pink'> \u0110\u00e1p \u00e1n l\u00e0 A.<\/span>","column":2}],"id_ques":781},{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":10,"ques":" K\u1ebft qu\u1ea3 khai tri\u1ec3n $x^3-125$ l\u00e0:","select":["A. $(x-5)(x+5)$","B. $(x-5)(x^2+5x+25)$","C. $(x-15)(x+15)$ ","D. $(x-5)(x^2-5x+25)$"],"hint":" Khai tri\u1ec3n theo h\u1eb1ng \u0111\u1eb3ng th\u1ee9c: $a^3-b^3=(a-b)(a^2+ab+b^2)$","explain":"<span class='basic_left'> $\\begin{align} & x^3-125 \\\\ & =x^3-5^3 \\\\ & =(x-5)(x^2+5x+25) \\\\ \\end{align}$ <br\/> <span class='basic_pink'> \u0110\u00e1p \u00e1n l\u00e0 B.<\/span>","column":2}],"id_ques":782},{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":10,"ques":" Gi\u00e1 tr\u1ecb c\u1ee7a bi\u1ec3u th\u1ee9c $125x^3-75x^2+15x-1$ t\u1ea1i $x = \\dfrac{1}{5}$ l\u00e0:","select":["A. $125$","B. $27$","C. $-1$ ","D. $0$"],"hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> <b> B\u01b0\u1edbc 1:<\/b> S\u1eed d\u1ee5ng h\u1eb1ng \u0111\u1eb3ng th\u1ee9c $(a-b)^3=a^3-3a^2b+3ab^2-b^3$ \u0111\u1ec3 thu g\u1ecdn bi\u1ec3u th\u1ee9c .<br\/> <b> B\u01b0\u1edbc 2:<\/b> Thay $x = \\dfrac{1}{5}$ v\u00e0o \u0111\u1ec3 t\u00ednh.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/> Ta c\u00f3: <br\/> $125x^3-75x^2+15x-1= (5x)^3 - 3 . (5x)^2 + 3 . 5x - 1^3 = (5x-1)^3$.<br\/> Thay $x = \\dfrac{1}{5}$ v\u00e0o bi\u1ec3u th\u1ee9c $(5x-1)^3$, ta \u0111\u01b0\u1ee3c: $(5.\\dfrac{1}{5}-1)^3=0$. <br\/> <span class='basic_pink'> V\u1eady ch\u1ecdn \u0111\u00e1p \u00e1n D. <\/span><\/span> ","column":2}],"id_ques":783},{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":10,"ques":" K\u1ebft qu\u1ea3 ph\u00e2n t\u00edch \u0111a th\u1ee9c $4x^2-4xy+y^2-9$ th\u00e0nh nh\u00e2n t\u1eed l\u00e0","select":["A. $(2x-y)(2x+y)$","B. $(2x+y+3)(2x-y-3)$","C. $(2x-y+3)(2x-y-3)$ ","D. $4(2x+y)(2x-y)$"],"hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> <b> B\u01b0\u1edbc 1:<\/b> Nh\u00f3m c\u00e1c h\u1ea1ng t\u1eed m\u1ed9t c\u00e1ch th\u00edch h\u1ee3p l\u00e0m xu\u1ea5t hi\u1ec7n h\u1eb1ng \u0111\u1eb3ng th\u1ee9c hi\u1ec7u hai b\u00ecnh ph\u01b0\u01a1ng <br\/> <b> B\u01b0\u1edbc 2:<\/b> Ph\u00e2n t\u00edch \u0111a th\u1ee9c th\u00e0nh nh\u00e2n t\u1eed theo h\u1eb1ng \u0111\u1eb3ng th\u1ee9c hi\u1ec7u hai b\u00ecnh ph\u01b0\u01a1ng <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/> Ta c\u00f3:<br\/> $\\begin{align} & 4x^2-4xy+y^2-9\\\\ & =(4x^2-4xy+y^2)-9\\\\ & =(2x-y)^2-3^2 \\\\ & =(2x-y+3)(2x-y-3) \\\\ \\end{align}$. <br\/> <span class='basic_pink'> V\u1eady ch\u1ecdn \u0111\u00e1p \u00e1n C. <\/span><\/span> ","column":2}],"id_ques":784},{"title":"\u0110i\u1ec1n \u0111\u00e1p \u00e1n th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng trong ph\u00e9p chia sau","title_trans":"","temp":"fill_the_blank","correct":[[["4x-11","-11+4x"],["26x-10","-10+26x"]]],"list":[{"point":10,"width":40,"content":"","type_input":"","type_check":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai11/lv3/img\/2.jpg' \/><\/center> $(4x^3-3x^2+1):(x^2+2x-1)=\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}$ d\u01b0 $\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}$","hint":" \u0110\u1eb7t t\u00ednh chia sau \u0111\u00f3 t\u00ecm th\u01b0\u01a1ng v\u00e0 t\u00ecm s\u1ed1 d\u01b0.","explain":"<span class='basic_left'> \u0110\u1eb7t ph\u00e9p chia: <br\/> $\\left. \\begin{align} & \\begin{matrix} 4{{x}^{3}}-3{{x}^{2}}\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,+1\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\, \\\\ 4{{x}^{3}}+8{{x}^{2}}-4x\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\, \\\\\\end{matrix} \\\\ & \\overline{\\begin{align} & \\,\\,\\,\\,\\,\\,\\,\\,\\,-11{{x}^{2}}+4x+1\\,\\,\\, \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,-11{{x}^{2}}-22x+11\\,\\,\\,\\, \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\overline{\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,26x-10\\,\\,\\,\\,} \\\\ \\end{align}} \\\\ \\end{align} \\right|\\begin{matrix} \\dfrac{{{x}^{2}}+2x-1}{4x-11} \\\\ \\begin{matrix} {} \\\\ {} \\\\\\end{matrix} \\\\ {} \\\\\\end{matrix}$ <br\/> V\u1eady $(4x^3-3x^2+1):(x^2+2x-1)=4x-11$ d\u01b0 $26x-10$ <br\/> <span class='basic_pink'> Do \u0111\u00f3 \u0111\u00e1p \u00e1n ph\u1ea3i \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $4x-11$ v\u00e0 $26x-10$. <\/span><\/span> "}],"id_ques":785},{"title":"\u0110i\u1ec1n \u0111\u00e1p \u00e1n th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng trong ph\u00e9p chia sau","title_trans":"","temp":"fill_the_blank","correct":[[["0"]]],"list":[{"point":10,"width":40,"type_input":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai11/lv3/img\/4.jpg' \/><\/center> S\u1ed1 d\u01b0 c\u1ee7a ph\u00e9p chia $(2x^4-3x^3-3x^2+6x-2):(x^2-2)$ l\u00e0 _input_","hint":" \u0110\u1eb7t ph\u00e9p chia $(2x^4-3x^3-3x^2+6x-2):(x^2-2)$, t\u00ecm s\u1ed1 d\u01b0. ","explain":"<span class='basic_left'> \u0110\u1eb7t ph\u00e9p chia: <br\/> $\\left. \\begin{align} & \\begin{matrix} 2{{x}^{4}}-3{{x}^{3}}-3{{x}^{2}}+6x-2\\,\\,\\,\\, \\\\ 2{{x}^{4}}\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,-4{{x}^{2}}\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\, \\\\\\end{matrix} \\\\ & \\overline{\\begin{align} & \\,\\,\\,\\,\\,\\,\\,\\,\\,-3{{x}^{3}}+{{x}^{2}}+6x-2\\,\\,\\,\\,\\,\\,\\, \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,-3{{x}^{3}}\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,+6x\\,\\,\\,\\, \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\overline{\\begin{align} & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,{{x}^{2}}\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,-2\\,\\,\\,\\,\\,\\,\\,\\, \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,{{x}^{2}}\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,-2\\,\\,\\,\\,\\,\\,\\,\\, \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\overline{\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,0\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,} \\\\ \\end{align}} \\\\ \\end{align}} \\\\ \\end{align} \\right|\\begin{matrix} \\dfrac{{{x}^{2}}-2}{2{{x}^{2}}-3x+1} \\\\ \\begin{matrix} \\begin{matrix} \\begin{matrix} {} \\\\ {} \\\\\\end{matrix} \\\\ {} \\\\\\end{matrix} \\\\ {} \\\\\\end{matrix} \\\\ {} \\\\\\end{matrix}$<br\/> S\u1ed1 d\u01b0 c\u1ee7a ph\u00e9p chia tr\u00ean l\u00e0 $0$. <br\/> <span class='basic_pink'> Do \u0111\u00f3 ph\u1ea3i \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $0$. <\/span><\/span> "}],"id_ques":786},{"title":"\u0110i\u1ec1n \u0111\u00e1p \u00e1n th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["15"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai11/lv3/img\/10.jpg' \/><\/center> T\u00ecm $m$ $( m\\,\\in\\,\\mathbb{Z})$ \u0111\u1ec3 ph\u00e9p chia $(3x^2+mx+27):(x+5)$ c\u00f3 s\u1ed1 d\u01b0 l\u00e0 $27$ <br\/> \u0110\u00e1p \u00e1n: $m$ = _input_","hint":" \u0110\u1eb7t t\u00ednh chia r\u1ed3i t\u00ecm s\u1ed1 d\u01b0, cho s\u1ed1 d\u01b0 b\u1eb1ng $27$ \u0111\u1ec3 t\u00ecm $m$.","explain":"<span class='basic_left'> Ta c\u00f3: <br\/> $\\left. \\begin{align} & \\begin{matrix} 3{{x}^{2}}+mx+27\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\, \\\\ 3{{x}^{2}}+15x\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\, \\\\\\end{matrix} \\\\ & \\overline{\\begin{align} & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\left( m-15 \\right)x+27\\,\\,\\,\\,\\,\\,\\, \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\left( m-15 \\right)x+5m-75\\,\\,\\,\\, \\\\ & \\,\\,\\,\\,\\,\\,\\,\\,\\,\\overline{\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,\\,102-5m\\,\\,\\,\\,\\,\\,\\,} \\\\ \\end{align}} \\\\ \\end{align} \\right|\\begin{matrix} \\dfrac{x+5}{3x+m-15} \\\\ \\begin{matrix} {} \\\\ {} \\\\\\end{matrix} \\\\ {} \\\\\\end{matrix}$ <br\/> V\u1eady $(3x^2+mx+27):(x+5)=3x+m-15$ d\u01b0 $102-5m$<br\/> \u0110\u1ec3 $(3x^2+mx+27):(x+5)$ c\u00f3 d\u01b0 l\u00e0 $27$ th\u00ec <br\/> $102-5m=27\\Rightarrow m=15$ <br\/> <span class='basic_pink'> Do \u0111\u00f3 \u0111\u00e1p \u00e1n ph\u1ea3i \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $15$. <\/span><\/span> "}],"id_ques":787},{"title":"\u0110i\u1ec1n \u0111\u00e1p \u00e1n th\u00edch h\u1ee3p v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["1"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai11/lv3/img\/11.jpg' \/><\/center> Gi\u00e1 tr\u1ecb nh\u1ecf nh\u1ea5t c\u1ee7a bi\u1ec3u th\u1ee9c $x^2+y^2+z^2+4x-2y-4z+10$ l\u00e0 _input_","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b> B\u01b0\u1edbc 1:<\/b> Bi\u1ebfn \u0111\u1ed5i $x^2+y^2+z^2+4x-2y-4z+10$ v\u1ec1 d\u1ea1ng $[f(x)]^2+[f(y)]^2+[f(z)]^2+a$ v\u1edbi $a$ l\u00e0 h\u1eb1ng s\u1ed1. <br\/> <b> B\u01b0\u1edbc 2:<\/b> Gi\u00e1 tr\u1ecb nh\u1ecf nh\u1ea5t c\u1ee7a bi\u1ec3u th\u1ee9c l\u00e0 $a$, t\u00ecm $x, y, z$ \u0111\u1ec3 d\u1ea5u \"=\" x\u1ea3y ra.<\/b> <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/> $\\begin{aligned} & {{x}^{2}}+{{y}^{2}}+{{z}^{2}}+4x-2y-4z+10 \\\\ & =\\left( {{x}^{2}}+4x+4 \\right)+\\left( {{y}^{2}}-2y+1 \\right)+\\left( {{z}^{2}}-4z+4 \\right)+1 \\\\ & ={{\\left( x+2 \\right)}^{2}}+{{\\left( y-1 \\right)}^{2}}+{{\\left( z-2 \\right)}^{2}}+1 \\\\ & \\text{Do}\\,\\,\\,\\left. \\begin{aligned} & {{\\left( x+2 \\right)}^{2}}\\ge 0 \\\\ & {{\\left( y-1 \\right)}^{2}}\\,\\ge 0 \\\\ & {{\\left( z-2 \\right)}^{2}}\\ge 0 \\\\ \\end{aligned} \\right\\}\\Rightarrow {{\\left( x+2 \\right)}^{2}}+{{\\left( y-1 \\right)}^{2}}+{{\\left( z-2 \\right)}^{2}}+1\\ge 1 \\hspace{0,2cm} \\text{v\u1edbi} \\hspace{0,2cm} \\forall x \\\\ \\end{aligned}$ <br\/> V\u1eady GTNN c\u1ee7a bi\u1ec3u th\u1ee9c l\u00e0 $1$.<br\/> D\u1ea5u \u201c=\u201d x\u1ea3y ra khi: $\\left\\{ \\begin{aligned} & x+2=0 \\\\ & y-1=0 \\\\ & z-2=0 \\\\ \\end{aligned} \\right.\\Leftrightarrow \\left\\{ \\begin{aligned} & x=-2 \\\\ & y=1 \\\\ & z=2 \\\\ \\end{aligned} \\right.$ <br\/> <span class='basic_pink'> Do \u0111\u00f3 \u0111\u00e1p \u00e1n ph\u1ea3i \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $1$. <\/span><\/span> "}],"id_ques":788},{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":10,"ques":" <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai11/lv3/img\/13.jpg' \/><\/center> Cho $x=y+1$ th\u00ec $M=x^3-y^3-3xy$ c\u00f3 gi\u00e1 tr\u1ecb l\u00e0:","select":["A. $1$","B. $2$","C. $3$ ","D. $4$"],"hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> <b> B\u01b0\u1edbc 1:<\/b> Thay $x=y+1$ v\u00e0o $M$ v\u00e0 bi\u1ebfn \u0111\u1ed5i, r\u00fat g\u1ecdn theo $y$. <br\/> <b> B\u01b0\u1edbc 2:<\/b> K\u1ebft lu\u1eadn gi\u00e1 tr\u1ecb c\u1ee7a $M$ t\u00ecm \u0111\u01b0\u1ee3c. <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/> Ta thay $x=y+1$ v\u00e0o $M$:<br\/> $\\begin{align} & M=x^3-y^3-3xy \\\\ & =(y+1)^3-y^3-3(y+1)y \\\\ & =y^3+3y^2+3y+1-y^3-3y^2-3y \\\\ & =1 \\\\ \\end{align}$ <br\/> <span class='basic_pink'> V\u1eady ch\u1ecdn \u0111\u00e1p \u00e1n A. <\/span><\/span> ","column":2}],"id_ques":789},{"title":"H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":10,"ques":" K\u1ebft qu\u1ea3 ph\u00e2n t\u00edch \u0111a th\u1ee9c $x^4-x^2-6$ th\u00e0nh nh\u00e2n t\u1eed l\u00e0","select":["A. $(x^2+x+1)(x^3-x-6)$","B. $(x^2-x-1)(x^3+x+6)$","C. $(x^2-2)(x^2+3)$ ","D. $(x^2+2)(x^2-3)$"],"hint":" T\u00e1ch $-x^2 = 2x^2 - 3x^2$ ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> <b> B\u01b0\u1edbc 1:<\/b> T\u00e1ch $-x^2 = 2x^2 - 3x^2$ <br\/> <b> B\u01b0\u1edbc 2:<\/b> Ti\u1ebfp t\u1ee5c ph\u00e2n t\u00edch b\u1eb1ng c\u00e1ch nh\u00f3m v\u00e0 \u0111\u1eb7t nh\u00e2n t\u1eed chung. <br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/> ${{x}^{4}}-{{x}^{2}}-6 \\\\ ={{x}^{4}}+2{{x}^{2}}-3{{x}^{2}}-6 \\\\ ={{x}^{2}}\\left( {{x}^{2}}+2 \\right)-3\\left( {{x}^{2}}+2 \\right) \\\\ =\\left( {{x}^{2}}+2 \\right)\\left( {{x}^{2}}-3 \\right)$ <br\/> <span class='basic_pink'> V\u1eady ch\u1ecdn \u0111\u00e1p \u00e1n D. <\/span><\/span> ","column":2}],"id_ques":790}],"id_ques":0}],"lesson":{"save":1,"level":3,"time":44}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý