đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":10,"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/16.jpg' \/><\/center>M\u1ed9t h\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ee9ng c\u00f3 t\u1ed5ng s\u1ed1 m\u1eb7t, s\u1ed1 c\u1ea1nh v\u00e0 s\u1ed1 \u0111\u1ec9nh l\u00e0 $602$. S\u1ed1 c\u1ea1nh c\u1ee7a \u0111a gi\u00e1c \u1edf \u0111\u00e1y l\u00e0 bao nhi\u00eau?","select":["A. $90$","B. $95$ ","C. $99$ ","D. $100$"],"hint":"Nh\u1edb l\u1ea1i m\u1ed1i li\u00ean h\u1ec7 gi\u1eefa s\u1ed1 \u0111\u1ec9nh, c\u1ea1nh v\u00e0 m\u1eb7t c\u1ee7a l\u0103ng tr\u1ee5 \u0111\u1ee9ng v\u1edbi s\u1ed1 c\u1ea1nh c\u1ee7a \u0111a gi\u00e1c \u1edf \u0111\u00e1y.","explain":" <span class='basic_left'>G\u1ecdi s\u1ed1 c\u1ea1nh c\u1ee7a \u0111a gi\u00e1c \u1edf \u0111\u00e1y l\u00e0 $n$ ($n\\in \\mathbb N^*$) <br\/>H\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ee9ng c\u00f3 $n+2$ m\u1eb7t, $2n$ \u0111\u1ec9nh v\u00e0 $3n$ c\u1ea1nh.<br\/>V\u00ec t\u1ed5ng s\u1ed1 m\u1eb7t, s\u1ed1 c\u1ea1nh v\u00e0 s\u1ed1 \u0111\u1ec9nh l\u00e0 $602$ n\u00ean ta c\u00f3:<br\/>$n+2+2n+3n=602\\Leftrightarrow n=100$<br\/>V\u1eady \u0111a gi\u00e1c \u1edf \u0111\u00e1y c\u00f3 $100$ c\u1ea1nh.<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 D<\/span><\/span>","column":2}]}],"id_ques":1860},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["4320"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"T\u00ednh th\u1ec3 t\u00edch c\u1ee7a h\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ee9ng c\u00f3 k\u00edch th\u01b0\u1edbc cho b\u1edfi h\u00ecnh v\u1ebd sau:<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/H8_B21_K1.12.png' \/><\/center><br\/><b> \u0110\u00e1p s\u1ed1: <\/b> _input_($cm^3$)","hint":"Chia h\u00ecnh l\u0103ng tr\u1ee5 th\u00e0nh hai h\u00ecnh h\u1ed9p ch\u1eef nh\u1eadt r\u1ed3i t\u00ednh.","explain":"<span class='basic_left'>K\u1ebb $PM'\\bot A'D'$ v\u00e0 $QN' \\bot B'C'$.<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/H8_B21_K1.12a.png' \/><\/center><br\/>Khi \u0111\u00f3, th\u1ec3 t\u00edch h\u00ecnh l\u0103ng tr\u1ee5 ban \u0111\u1ea7u b\u1eb1ng t\u1ed5ng th\u1ec3 t\u00edch $ABNM.A'B'N'M'$ v\u00e0 $PQCD.M'N'C'D'$<br\/>X\u00e9t h\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ee9ng $ABNM.A'B'N'M'$ l\u00e0 h\u00ecnh h\u1ed9p ch\u1eef nh\u1eadt c\u00f3 k\u00edch th\u01b0\u1edbc $12\\,cm;12\\,cm$ v\u00e0 $18\\,cm$<br\/>Do v\u1eady th\u1ec3 t\u00edch h\u00ecnh l\u0103ng tr\u1ee5 l\u00e0 $12.12.18=2592\\,(cm^3)$<br\/>D\u1ec5 d\u00e0ng ch\u1ee9ng minh \u0111\u01b0\u1ee3c h\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ee9ng $PQCD.M'N'C'D'$ l\u00e0 h\u00ecnh l\u1eadp ph\u01b0\u01a1ng c\u00f3 k\u00edch th\u01b0\u1edbc $12\\,cm$.<br\/>Do v\u1eady th\u1ec3 t\u00edch $PQCD.M'N'C'D'$ l\u00e0 $12^3=1728\\,(cm^3)$<br\/>V\u1eady th\u1ec3 t\u00edch h\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ee9ng ban \u0111\u1ea7u l\u00e0 $2592+1728=4320\\,(cm^3)$<br\/><span class='basic_pink'>V\u1eady s\u1ed1 ph\u1ea3i \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $4320$.<\/span><\/span>"}]}],"id_ques":1861},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":10,"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/2.jpg' \/><\/center>M\u1ed9t h\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ee9ng $ABCD. A\u2019B\u2019C\u2019D\u2019$ c\u00f3 \u0111\u00e1y l\u00e0 h\u00ecnh thoi v\u1edbi c\u00e1c \u0111\u01b0\u1eddng ch\u00e9o c\u1ee7a \u0111\u00e1y $BD=16\\,cm$ v\u00e0 $AC=30\\, cm$. Di\u1ec7n t\u00edch xung quanh c\u1ee7a l\u0103ng tr\u1ee5 l\u00e0 $612\\,cm^2$. T\u00ednh th\u1ec3 t\u00edch l\u0103ng tr\u1ee5.","select":["A. $1080\\,cm^3$","B. $2160\\,cm^3$","C. $4320\\,cm^3$","D. $8640\\,cm^3$"],"hint":"\u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Pytago t\u00ednh \u0111\u1ed9 d\u00e0i m\u1ed7i c\u1ea1nh c\u1ee7a h\u00ecnh thoi.","explain":" <span class='basic_left'><br\/><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> T\u00ednh \u0111\u1ed9 d\u00e0i c\u1ea1nh h\u00ecnh thoi.<br\/><b>B\u01b0\u1edbc 2:<\/b> T\u00ednh chi\u1ec1u cao h\u00ecnh l\u0103ng tr\u1ee5<br\/><b>B\u01b0\u1edbc 3:<\/b> T\u00ednh di\u1ec7n t\u00edch \u0111\u00e1y v\u00e0 th\u1ec3 t\u00edch h\u00ecnh thoi.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/H8_B21_K1.1.png' \/><\/center>G\u1ecdi $O $ l\u00e0 giao \u0111i\u1ec3m c\u1ee7a $AC$ v\u00e0 $BD$. <br\/>V\u00ec $ABCD$ l\u00e0 h\u00ecnh thoi n\u00ean $AC\\bot BD$.<br\/>X\u00e9t tam gi\u00e1c $AOD$ vu\u00f4ng t\u1ea1i $O$ c\u00f3: $AO=\\dfrac{1}{2}AC=15\\,cm$ v\u00e0 $ OD=\\dfrac{1}{2}BD= 8\\,cm$<br\/>\u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Pytago ta c\u00f3: <br\/>$AD^2=AO^2+OD^2\\\\ \\Rightarrow AD^2=15^2+8^2\\\\ \\Leftrightarrow AD^2=289\\\\ \\Leftrightarrow AD=17\\,(cm)$<br\/>Chu vi h\u00ecnh thoi $ABCD$ l\u00e0 $4.AD=68\\,(cm)$<br\/>Do di\u1ec7n t\u00edch xung quanh c\u1ee7a l\u0103ng tr\u1ee5 l\u00e0 $612\\,cm^2$ n\u00ean ta c\u00f3:<br\/> $AA\u2019. 68=612\\\\ \\Leftrightarrow AA\u2019=9\\,(cm)$.<br\/>Di\u1ec7n t\u00edch \u0111\u00e1y $ABCD$ l\u00e0 $\\dfrac{1}{2}.16.30=240\\,(cm^2)$<br\/>Th\u1ec3 t\u00edch c\u1ee7a l\u0103ng tr\u1ee5 l\u00e0 $AA\u2019.S_{ABCD}=9.240=2160\\,(cm^3)$<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 B <\/span><\/span>","column":2}]}],"id_ques":1862},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["504"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"M\u1ed9t kh\u1ed1i g\u1ed7 h\u00ecnh h\u1ed9p ch\u1eef nh\u1eadt c\u00f3 k\u00edch th\u01b0\u1edbc nh\u01b0 h\u00ecnh v\u1ebd. Ng\u01b0\u1eddi ta c\u1eaft m\u1ed9t l\u00e1t c\u1eaft theo m\u1eb7t ph\u1eb3ng $BB\u2019M\u2019M$ \u0111\u01b0\u1ee3c h\u00ecnh l\u0103ng tr\u1ee5 $ABM.A\u2019B\u2019M\u2019$ c\u00f3 th\u1ec3 t\u00edch $216 cm^3$. V\u1edbi $M \\in AD$ sao cho $\\dfrac{AM}{MD}=\\dfrac{3}{2}$ v\u00e0 $MM'\/\/AA'$. T\u00ednh th\u1ec3 t\u00edch l\u0103ng tr\u1ee5 $BMDC.B\u2019M\u2019D\u2019C\u2019$.<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/H8_B21_K1.6.png' \/><\/center><br\/><b> \u0110\u00e1p s\u1ed1: <\/b> _input_($cm^3$)","hint":"T\u00ednh th\u1ec3 t\u00edch h\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ee9ng $ABCD.A\u2019B\u2019C\u2019B\u2019$","explain":"<span class='basic_left'><br\/><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> \u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Pytago v\u00e0o tam gi\u00e1c $A'B'M'$ t\u00ednh $A'M'$.<br\/><b>B\u01b0\u1edbc 2:<\/b> T\u00ednh chi\u1ec1u cao $A'A$<br\/><b>B\u01b0\u1edbc 3:<\/b> T\u00ednh $AD$<br\/><b>B\u01b0\u1edbc 4:<\/b> T\u00ednh th\u1ec3 t\u00edch l\u0103ng tr\u1ee5 \u0111\u1ee9ng $ABCD.A'B'C'D'$<br\/><b>B\u01b0\u1edbc 5:<\/b> T\u00ednh th\u1ec3 t\u00edch l\u0103ng tr\u1ee5 $BMDC.B'M'C'D'$<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/H8_B21_K1.6.png' \/><\/center><br\/>V\u00ec $ABCD.A'B'C'D'$ l\u00e0 h\u00ecnh h\u1ed9p ch\u1eef nh\u1eadt n\u00ean $AD=A'D'$, $A'D'\\bot A'B'$<br\/>X\u00e9t tam gi\u00e1c $A\u2019B\u2019M\u2019$ vu\u00f4ng t\u1ea1i $A\u2019$.<br\/>\u00c1P d\u1ee5ng \u0111\u1ecbnh l\u00fd Pytago ta c\u00f3:<br\/>$A\u2019M\u2019^2=B\u2019M\u2019^2-A\u2019B\u2019^2\\\\ \\Rightarrow A\u2019M\u2019^2=10^2-6^2\\\\ \\Leftrightarrow A\u2019M\u2019^2=64\\\\ \\Leftrightarrow A\u2019M\u2019=8\\,(cm)$<br\/>Di\u1ec7n t\u00edch $A\u2019B\u2019M\u2019$ l\u00e0 $\\dfrac{1}{2}.6.8=24\\,(cm^2)$.<br\/>V\u00ec $ABM.A\u2019B\u2019M\u2019$ c\u00f3 th\u1ec3 t\u00edch l\u00e0 $216\\,cm^3$ n\u00ean chi\u1ec1u cao $A\u2019A$ l\u00e0 $216:24=9\\,(cm)$<br\/>Ta c\u00f3, $MM'\/\/AA'$ v\u00e0 $A'M'\/\/AM$ n\u00ean $AM=A'M'=8\\,(cm)$ (t\u00ednh ch\u1ea5t \u0111o\u1ea1n ch\u1eafn)<br\/>Ta c\u00f3, $\\dfrac{AM}{MD}=\\dfrac{3}{2}$ n\u00ean $\\dfrac{AM}{AD}=\\dfrac{3}{5}$. Suy ra, $AD=\\dfrac{5}{3}AM=\\dfrac{5}{3}.8=\\dfrac{40}{3}\\,(cm)$.<br\/>V\u1eady th\u1ec3 t\u00edch $ABCD.A\u2019B\u2019C\u2019D\u2019$ l\u00e0 $AD.AB.AA'=\\dfrac{40}{3}.6.9=720\\,(cm^3)$<br\/>V\u1eady th\u1ec3 t\u00edch $BMDC.B\u2019M\u2019D\u2019C\u2019$ l\u00e0 $720-216=504\\,(cm^3)$ <br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $504$<\/span><\/span>"}]}],"id_ques":1863},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":10,"ques":"Cho h\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ee9ng $ABCD.A\u2019B\u2019C\u2019D\u2019$ c\u00f3 \u0111\u00e1y l\u00e0 h\u00ecnh thoi. Bi\u1ebft \u0111\u01b0\u1eddng cao $AA\u2019=15cm$ v\u00e0 c\u00e1c \u0111\u01b0\u1eddng ch\u00e9o $AC\u2019=17 cm$ v\u00e0 $DB\u2019= 25 cm$. T\u00ednh th\u1ec3 t\u00edch h\u00ecnh l\u0103ng tr\u1ee5.<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/H8_B21_K1.3a.png' \/><\/center>","select":["A. $1000\\,cm^3$","B. $1100\\,cm^3$","C. $1200\\,cm^3$","D. $2400\\,cm^3$"],"hint":"Tam gi\u00e1c $ACC\u2019$ vu\u00f4ng t\u1ea1i $C$ v\u00e0 tam gi\u00e1c $DBB'$ vu\u00f4ng t\u1ea1i $B$","explain":" <span class='basic_left'><br\/><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> \u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Pytago v\u00e0o hai tam gi\u00e1c vu\u00f4ng $ACC'$ v\u00e0 $DBB'$, t\u00ednh hai \u0111\u01b0\u1eddng ch\u00e9o c\u1ee7a h\u00ecnh thoi \u1edf \u0111\u00e1y.<br\/><b>B\u01b0\u1edbc 2:<\/b> T\u00ednh di\u1ec7n t\u00edch \u0111\u00e1y.<br\/><b>B\u01b0\u1edbc 3:<\/b> T\u00ednh th\u1ec3 t\u00edch l\u0103ng tr\u1ee5 \u0111\u1ee9ng<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/H8_B21_K1.3a.png' \/><\/center>V\u00ec $ABCD.A'B'C'D'$ l\u00e0 l\u0103ng tr\u1ee5 \u0111\u1ee9ng n\u00ean $AA'=BB'=CC'=DD'=15\\,cm$<br\/>Ta c\u00f3, $CC'\\bot mp(ABCD)\\Leftrightarrow CC'\\bot AC\\,\\Leftrightarrow \\widehat {AC'C}=90^o$<br\/>X\u00e9t tam gi\u00e1c $ACC\u2019$ vu\u00f4ng t\u1ea1i $C$. <br\/>\u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Pytago ta c\u00f3: $AC^2=AC\u2019^2-CC\u2019^2\\\\ \\Rightarrow AC^2=17^2-15^2\\\\ \\Leftrightarrow AC^2= 64\\\\ \\Leftrightarrow AC=8\\,(cm)$<br\/>Ta c\u00f3, $BB'\\bot mp(ABCD)\\Leftrightarrow BB'\\bot BD\\,\\Leftrightarrow \\widehat {DBB'}=90^o$<br\/>X\u00e9t tam gi\u00e1c $DBB'$ vu\u00f4ng t\u1ea1i $B$. <br\/>\u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Pytago ta c\u00f3: $BD^2=DB\u2019^2-BB\u2019^2\\\\ \\Rightarrow BD^2 =25^2-15^2\\\\ \\Leftrightarrow BD^2 =400\\\\ \\Leftrightarrow BD=20\\,(cm)$<br\/>Di\u1ec7n t\u00edch \u0111\u00e1y $ABCD$ l\u00e0 $\\dfrac{1}{2}.AC.BD=\\dfrac{1}{2}.8.20=80\\,(cm^2)$<br\/>V\u1eady th\u1ec3 t\u00edch l\u0103ng tr\u1ee5 l\u00e0 $15.80=1200\\,(cm^3)$<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 C<\/span><\/span>","column":2}]}],"id_ques":1864},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00fang ho\u1eb7c sai","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":10,"ques":"H\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ee9ng tam gi\u00e1c $ABC.A\u2019B\u2019C\u2019$ c\u00f3 \u0111\u00e1y l\u00e0 tam gi\u00e1c \u0111\u1ec1u v\u1edbi $M$ l\u00e0 trung \u0111i\u1ec3m $BC$ v\u00e0 $AA\u2019=AM=a$ th\u00ec c\u00f3 di\u1ec7n t\u00edch to\u00e0n ph\u1ea7n l\u00e0 $\\dfrac{7a^2}{\\sqrt 3}\\,cm^2$.<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/H8_B21_K1.4.png' \/><\/center>","select":["\u0110\u00fang","Sai"],"hint":"T\u00ednh \u0111\u1ed9 d\u00e0i c\u1ea1nh \u0111\u00e1y.<br\/>G\u1ecdi \u0111\u1ed9 d\u00e0i c\u1ea1nh tam gi\u00e1c \u0111\u1ec1u l\u00e0 $x$","explain":"<span class='basic_left'><br\/><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> G\u1ecdi \u0111\u1ed9 d\u00e0i c\u1ea1nh \u0111\u00e1y l\u00e0 $x$<br\/><b>B\u01b0\u1edbc 2:<\/b> L\u1eadp ph\u01b0\u01a1ng tr\u00ecnh t\u00ecm $x$ theo $a$<br\/><b>B\u01b0\u1edbc 3:<\/b> T\u00ednh di\u1ec7n t\u00edch \u0111\u00e1y v\u00e0 di\u1ec7n t\u00edch xung quanh c\u1ee7a l\u0103ng tr\u1ee5<br\/><b>B\u01b0\u1edbc 4:<\/b> T\u00ednh di\u1ec7n t\u00edch to\u00e0n ph\u1ea7n c\u1ee7a l\u0103ng tr\u1ee5.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/H8_B21_K1.4a.png' \/><\/center>G\u1ecdi \u0111\u1ed9 d\u00e0i c\u1ea1nh tam gi\u00e1c \u0111\u1ec1u l\u00e0 $x$ ($cm,\\,x>0$)<br\/>Ta c\u00f3, tam gi\u00e1c $ABC$ \u0111\u1ec1u c\u00f3 $AB=x\\,(cm); \\,BM=\\dfrac{x}{2}\\,(cm)$<br\/>V\u00ec $AM$ l\u00e0 \u0111\u01b0\u1eddng trung tuy\u1ebfn c\u1ee7a tam gi\u00e1c \u0111\u1ec1u $ABC$ n\u00ean \u0111\u1ed3ng th\u1eddi l\u00e0 \u0111\u01b0\u1eddng cao.<br\/>X\u00e9t tam gi\u00e1c $ABM$ vu\u00f4ng t\u1ea1i $M$. \u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Pytago ta c\u00f3:<br\/>$AB^2=AM^2+BM^2\\\\ \\Rightarrow x^2=a^2+\\dfrac{x^2}{4}\\\\ \\Leftrightarrow \\dfrac{3x^2}{4}=a^2\\\\ \\Leftrightarrow x=\\dfrac{2a}{\\sqrt{3}}\\,(cm) $<br\/>V\u1eady tam gi\u00e1c $ABC$ \u0111\u1ec1u c\u1ea1nh $\\dfrac{2a}{\\sqrt{3}}\\,(cm) $<br\/>Di\u1ec7n t\u00edch tam gi\u00e1c $ABC$ l\u00e0 $\\dfrac{1}{2}.AM.BC=\\dfrac{1}{2}.a.\\dfrac{2a}{\\sqrt{3}}=\\dfrac{a^2}{\\sqrt{3}}\\,(cm^2)$<br\/>Di\u1ec7n t\u00edch xung quanh c\u1ee7a l\u0103ng tr\u1ee5 l\u00e0 $3.\\dfrac{2a}{\\sqrt{3}}.a=\\dfrac{6a^2}{\\sqrt{3}}\\,(cm^2)$<br\/>V\u1eady di\u1ec7n t\u00edch to\u00e0n ph\u1ea7n c\u1ee7a l\u0103ng tr\u1ee5 l\u00e0 $2.\\dfrac{a^2}{\\sqrt{3}}+\\dfrac{6a^2}{\\sqrt{3}}=\\dfrac{8a^2}{\\sqrt{3}}\\,(cm^2)$<br\/><span class='basic_pink'>V\u1eady kh\u1eb3ng \u0111\u1ecbnh tr\u00ean l\u00e0 Sai<\/span><\/span>","column":2}]}],"id_ques":1865},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["10"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"M\u1ed9t h\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ec1u c\u00f3 t\u1ed5ng s\u1ed1 m\u1eb7t, s\u1ed1 \u0111\u1ec9nh v\u00e0 s\u1ed1 c\u1ea1nh l\u00e0 $26$. Bi\u1ebft th\u1ec3 t\u00edch h\u00ecnh l\u0103ng tr\u1ee5 l\u00e0 $640\\,cm^3$. Di\u1ec7n t\u00edch xung quanh l\u00e0 $320 cm^2$. T\u00ednh chi\u1ec1u cao c\u1ee7a l\u0103ng tr\u1ee5.<br\/><b> \u0110\u00e1p s\u1ed1: <\/b> Chi\u1ec1u cao c\u1ee7a l\u0103ng tr\u1ee5 l\u00e0 _input_ ($cm$)<br\/>(<i>L\u0103ng tr\u1ee5 \u0111\u1ec1u l\u00e0 l\u0103ng tr\u1ee5 c\u00f3 \u0111\u00e1y l\u00e0 \u0111a gi\u00e1c \u0111\u1ec1u<\/i>)","hint":"T\u00ecm s\u1ed1 c\u1ea1nh \u1edf \u0111\u00e1y. Vi\u1ebft bi\u1ec3u th\u1ee9c t\u00ednh di\u1ec7n t\u00edch xung quanh v\u00e0 th\u1ec3 t\u00edch theo c\u00e1c k\u00edch th\u01b0\u1edbc c\u1ee7a l\u0103ng tr\u1ee5 \u0111\u1ee9ng.","explain":"<span class='basic_left'><br\/><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> T\u00ecm s\u1ed1 c\u1ea1nh c\u1ee7a \u0111a gi\u00e1c \u1edf \u0111\u00e1y.<br\/><b>B\u01b0\u1edbc 2:<\/b> G\u1ecdi \u0111\u1ed9 d\u00e0i c\u1ea1nh \u0111\u00e1y v\u00e0 chi\u1ec1u cao l\u0103ng tr\u1ee5 l\u00e0 $a$ v\u00e0 $h$<br\/><b>B\u01b0\u1edbc 3:<\/b> Vi\u1ebft bi\u1ec3u th\u1ee9c t\u00ednh di\u1ec7n t\u00edch xung quanh v\u00e0 th\u1ec3 t\u00edch theo c\u00e1c k\u00edch th\u01b0\u1edbc c\u1ee7a l\u0103ng tr\u1ee5 \u0111\u1ee9ng.<br\/><b>B\u01b0\u1edbc 4:<\/b> Bi\u1ebfn \u0111\u1ed5i t\u00ecm c\u00e1c k\u00edch th\u01b0\u1edbc.<br\/><b>B\u01b0\u1edbc 5:<\/b> T\u00ecm chi\u1ec1u cao v\u00e0 k\u1ebft lu\u1eadn.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/H8_B21_K1.7.png' \/><\/center><br\/>G\u1ecdi s\u1ed1 c\u1ea1nh c\u1ee7a \u0111a gi\u00e1c \u1edf \u0111\u00e1y c\u1ee7a h\u00ecnh l\u0103ng tr\u1ee5 l\u00e0 $n$ ($n\\in \\mathbb N^*$)<br\/>Khi \u0111\u00f3, h\u00ecnh l\u0103ng tr\u1ee5 c\u00f3 $2n$ \u0111\u1ec9nh, $3n$ c\u1ea1nh v\u00e0 $n+2$ m\u1eb7t. <br\/>V\u00ec h\u00ecnh l\u0103ng tr\u1ee5 c\u00f3 t\u1ed5ng s\u1ed1 m\u1eb7t, s\u1ed1 \u0111\u1ec9nh v\u00e0 s\u1ed1 c\u1ea1nh l\u00e0 $26$ n\u00ean ta c\u00f3:<br\/> $2n+3n+n+2=26\\\\ \\Leftrightarrow 6n=24\\\\ \\Leftrightarrow n=4$<br\/>V\u1eady l\u0103ng tr\u1ee5 l\u00e0 l\u0103ng tr\u1ee5 t\u1ee9 gi\u00e1c \u0111\u1ec1u hay l\u0103ng tr\u1ee5 l\u00e0 h\u00ecnh h\u1ed9p ch\u1eef nh\u1eadt c\u00f3 \u0111\u00e1y l\u00e0 h\u00ecnh vu\u00f4ng.<br\/>G\u1ecdi \u0111\u1ed9 d\u00e0i c\u1ea1nh h\u00ecnh vu\u00f4ng l\u00e0 $a, (cm,\\,a>0)$ v\u00e0 \u0111\u01b0\u1eddng cao l\u00e0 $h \\,(cm,\\,h > 0)$<br\/>Di\u1ec7n t\u00edch xung quanh c\u1ee7a l\u0103ng tr\u1ee5 l\u00e0 $4ah=320$ $(cm^2)$ (1)<br\/>Th\u1ec3 t\u00edch c\u1ee7a l\u0103ng tr\u1ee5 l\u00e0 $a^2.h=640\\,(cm^3)$ (2)<br\/>T\u1eeb (1), ta c\u00f3: $ah=\\dfrac{320}{4}=80$.<br\/>Thay gi\u00e1 tr\u1ecb c\u1ee7a $ah$ v\u00e0o (2), ta c\u00f3: $a.80=640\\Leftrightarrow a=8\\,(cm)$<br\/>V\u1eady \u0111\u1ed9 d\u00e0i c\u1ea1nh \u0111\u00e1y l\u00e0 $8\\, cm$.<br\/>Chi\u1ec1u cao c\u1ee7a l\u0103ng tr\u1ee5 l\u00e0 $80:8=10\\,(cm)$<br\/><span class='basic_pink'>V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $10$<\/span><\/span>"}]}],"id_ques":1866},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":10,"ques":"M\u1ed9t h\u00ecnh l\u0103ng tr\u1ee5 l\u1ee5c gi\u00e1c \u0111\u1ec1u c\u00f3 \u0111\u1ed9 d\u00e0i m\u1ed7i c\u1ea1nh \u0111\u1ec1u b\u1eb1ng $2\\sqrt 3 cm$. T\u00ednh th\u1ec3 t\u00edch l\u0103ng tr\u1ee5 \u0111\u00f3.<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/H8_B21_K1.5a.png' \/><\/center>","select":["A. $72\\sqrt{3}\\,cm^3$","B. $36\\sqrt{3}\\,cm^3$","C. $54\\,cm^3$","D. $108\\,cm^3$"],"hint":"Chia \u0111\u00e1y th\u00e0nh $6$ tam gi\u00e1c nh\u1ecf c\u00f3 c\u00f9ng di\u1ec7n t\u00edch, r\u1ed3i t\u00ednh di\u1ec7n t\u00edch \u0111\u00e1y.","explain":" <span class='basic_left'>L\u0103ng tr\u1ee5 l\u1ee5c gi\u00e1c \u0111\u1ec1u l\u00e0 l\u0103ng tr\u1ee5 c\u00f3 \u0111\u00e1y l\u00e0 h\u00ecnh l\u1ee5c gi\u00e1c \u0111\u1ec1u.<br\/>X\u00e9t h\u00ecnh l\u1ee5c gi\u00e1c \u0111\u1ec1u $ABCDEF$ c\u00f3 t\u00e2m l\u00e0 $O$.<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/H8_B21_K1.5.png' \/><\/center><br\/>Ta c\u00f3 di\u1ec7n t\u00edch l\u1ee5c gi\u00e1c \u0111\u1ec1u $ABCDEF$ b\u1eb1ng $6$ l\u1ea7n di\u1ec7n t\u00edch tam gi\u00e1c \u0111\u1ec1u $ABO$.<br\/>K\u1ebb $OH \\bot AB$ ($H\\in AB$)<br\/>Ta c\u00f3, $OH$ l\u00e0 \u0111\u01b0\u1eddng cao \u0111\u1ed3ng th\u1eddi l\u00e0 \u0111\u01b0\u1eddng trung tuy\u1ebfn c\u1ee7a tam gi\u00e1c $OAB$. Suy ra $AH=\\dfrac{AB}{2}=\\sqrt{3}\\,cm$<br\/>X\u00e9t tam gi\u00e1c $OAH$ vu\u00f4ng t\u1ea1i $H$. \u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Pytago ta c\u00f3: <br\/>$OH^2=AO^2-AH^2\\\\ \\Rightarrow OH^2=(2\\sqrt{3})^2-(\\sqrt{3})^2\\\\ \\Leftrightarrow OH^2=9\\\\ \\Leftrightarrow OH=3\\,(cm)$<br\/>Di\u1ec7n t\u00edch tam gi\u00e1c $ABO$ l\u00e0 $\\dfrac{1}{2}OH.AB=\\dfrac{1}{2}.3.2\\sqrt{3}=3\\sqrt{3}\\,(cm^2)$<br\/>Di\u1ec7n t\u00edch l\u1ee5c gi\u00e1c \u0111\u1ec1u c\u1ea1nh $2\\sqrt{3}\\,cm$ l\u00e0 $6.3\\sqrt{3}=18\\sqrt{3}\\,(cm^2)$<br\/>V\u1eady th\u1ec3 t\u00edch h\u00ecnh l\u0103ng tr\u1ee5 l\u00e0 $18\\sqrt{3}.2\\sqrt {3}=108\\,(cm^3)$<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 D <\/span><\/span>","column":2}]}],"id_ques":1867},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":10,"ques":"Cho h\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ee9ng $ABCD.A\u2019B\u2019C\u2019D\u2019$ c\u00f3 \u0111\u00e1y $ABCD$ l\u00e0 h\u00ecnh thang vu\u00f4ng t\u1ea1i $A$ v\u00e0 $D$. Bi\u1ebft $AB=AD=a\\,cm, \\widehat{BCD}=45^o$ v\u00e0 $AC\u2019=3a\\,cm$. T\u00ednh th\u1ec3 t\u00edch c\u1ee7a h\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ee9ng.<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/H8_B21_K1.8.png' \/><\/center>","select":["A. $3a^3\\,cm^3$","B. $a^3\\,cm^3$","C. $\\dfrac{a^3}{2}\\,cm^3$","D. $\\dfrac{a^3}{3}\\,cm^3$"],"hint":"K\u1ebb $BH\\bot DC$. T\u00ednh $DC$.","explain":"<span class='basic_left'><br\/><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> K\u1ebb $BH\\bot DC$. Ch\u1ee9ng minh tam gi\u00e1c $BHC$ vu\u00f4ng c\u00e2n.<br\/><b>B\u01b0\u1edbc 2:<\/b> T\u00ednh $DC$<br\/><b>B\u01b0\u1edbc 3:<\/b> T\u00ednh $AC$ v\u00e0 $CC'$<br\/><b>B\u01b0\u1edbc 4:<\/b> T\u00ednh di\u1ec7n t\u00edch \u0111\u00e1y r\u1ed3i t\u00ednh th\u1ec3 t\u00edch h\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ee9ng.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/H8_B21_K1.8a.png' \/><\/center><br\/>K\u1ebb $BH\\bot DC$ ($H\\bot DC$)<br\/>Ta c\u00f3 $BH\\bot DC;\\,AD\\bot DC$ (gi\u1ea3 thi\u1ebft) suy ra $BH\/\/AD$. <br\/>L\u1ea1i c\u00f3 $AB\/\/DH$ (gi\u1ea3 thi\u1ebft), suy ra $ABHD$ l\u00e0 h\u00ecnh b\u00ecnh h\u00e0nh.<br\/>Suy ra $BH=AD=a$<br\/>X\u00e9t tam gi\u00e1c $BHC$ vu\u00f4ng t\u1ea1i $H$ c\u00f3 $\\widehat{C}=45^o$ n\u00ean $BHC$ l\u00e0 tam gi\u00e1c vu\u00f4ng c\u00e2n t\u1ea1i $H$.<br\/>Do \u0111\u00f3, $HC=BH=a$, suy ra $DC=2a$<br\/>X\u00e9t tam gi\u00e1c $ADC$ vu\u00f4ng t\u1ea1i $D$. <br\/>\u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Pytago ta c\u00f3:<br\/>$AC^2=AD^2+DC^2\\\\ \\Rightarrow AC^2=a^2+(2a)^2\\\\ \\Leftrightarrow AC^2=5a^2\\\\ \\Leftrightarrow AC=a\\sqrt{5}\\,(cm)$<br\/>X\u00e9t tam gi\u00e1c $ACC'$ vu\u00f4ng t\u1ea1i $C$.<br\/>\u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Pytago ta c\u00f3:<br\/>$CC'^2=AC'^2-AC^2\\\\ \\Rightarrow CC'^2=(3a)^2-(a\\sqrt{5})^2\\\\ \\Leftrightarrow CC'^2=4a^2\\\\ \\Leftrightarrow CC'=2a\\,(cm)$<br\/>Di\u1ec7n t\u00edch h\u00ecnh thang $ABCD$ l\u00e0 $\\dfrac{1}{2}(AB+DC).AD=\\dfrac{1}{2}.(a+2a).a=\\dfrac{3a^2}{2}$ ($cm^2$)<br\/>V\u1eady th\u1ec3 t\u00edch h\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ee9ng l\u00e0 $CC'.S_{ABCD}=2a.\\dfrac{3a^2}{2}=3a^3$ ($cm^3$)<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 A<\/span><\/span>","column":2}]}],"id_ques":1868},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["432"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"Cho h\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ee9ng $ABC.A'B'C'$ \u0111\u00e1y l\u00e0 c\u00e1c tam gi\u00e1c vu\u00f4ng t\u1ea1i $B$ v\u00e0 $B'$. M\u1eb7t b\u00ean $AA'C'C$ l\u00e0 h\u00ecnh vu\u00f4ng c\u1ea1nh $12\\,cm$ v\u00e0 $\\widehat{A'BC}=30^o$. T\u00ednh th\u1ec3 t\u00edch h\u00ecnh l\u0103ng tr\u1ee5. <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/H8_B21_K1.14.png' \/><\/center><br\/><b> \u0110\u00e1p s\u1ed1: <\/b> _input_ ($cm^3$)","hint":"Trong tam gi\u00e1c vu\u00f4ng \u0111\u1ed9 d\u00e0i c\u1ea1nh g\u00f3c vu\u00f4ng \u0111\u1ed1i di\u1ec7n g\u00f3c $30^o$ c\u00f3 \u0111\u1ed9 d\u00e0i b\u1eb1ng n\u1eeda c\u1ea1nh huy\u1ec1n.","explain":"<span class='basic_left'><br\/><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> T\u00ednh $A'C$<br\/><b>B\u01b0\u1edbc 2:<\/b> Ch\u1ee9ng minh tam gi\u00e1c $A'BC$ vu\u00f4ng t\u1ea1i $B$<br\/><b>B\u01b0\u1edbc 3:<\/b> T\u00ednh $BC$ v\u00e0 $AB$<br\/><b>B\u01b0\u1edbc 4:<\/b> T\u00ednh di\u1ec7n t\u00edch tam gi\u00e1c $ABC$ r\u1ed3i t\u00ednh th\u1ec3 t\u00edch l\u0103ng tr\u1ee5.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai21/lv3/img\/H8_B21_K1.14.png' \/><\/center><br\/>V\u00ec $AA'C'C$ l\u00e0 h\u00ecnh vu\u00f4ng n\u00ean tam gi\u00e1c $A'AC$ vu\u00f4ng c\u00e2n t\u1ea1i $A$, suy ra $A'C=12\\sqrt{2}\\,(cm)$<br\/>Ta c\u00f3, $ABC.A'B'C'$ l\u00e0 h\u00ecnh l\u0103ng tr\u1ee5 \u0111\u1ee9ng tam gi\u00e1c c\u00f3 $CB\\bot AB$ v\u00e0 $CB\\bot BB'$ n\u00ean $CB\\bot mp(AA'B'B)$.<br\/>Do v\u1eady $CB\\bot A'B$ hay tam gi\u00e1c $A'BC$ vu\u00f4ng t\u1ea1i $B$.<br\/>Ta l\u1ea1i c\u00f3, trong tam gi\u00e1c vu\u00f4ng $A'BC$ c\u00f3 $\\widehat {BA'C}=30^o$, suy ra $BC=\\dfrac{A'C}{2}=6\\sqrt{2}\\,(cm)$<br\/>X\u00e9t tam gi\u00e1c $ABC$ vu\u00f4ng t\u1ea1i $B$ <br\/>\u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Pytago, ta c\u00f3: <br\/>$BC^2+AB^2=AC^2\\\\ \\Rightarrow AB^2=12^2-(6\\sqrt{2})^2\\\\ \\Leftrightarrow AB^2=72\\\\ \\Leftrightarrow AB=6\\sqrt{2}\\,(cm)$<br\/>Di\u1ec7n t\u00edch tam gi\u00e1c $ABC$ l\u00e0 $\\dfrac{1}{2}AB.BC=\\dfrac{1}{2}.6\\sqrt{2}.6\\sqrt{2}=36\\,(cm^2)$<br\/>V\u1eady th\u1ec3 t\u00edch h\u00ecnh l\u0103ng tr\u1ee5 l\u00e0 $36.12=432\\,(cm^3)$<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $432$<\/span><br\/><\/span>"}]}],"id_ques":1869}],"lesson":{"save":0,"level":3}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý