đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":10,"ques":" <span class='basic_left'> T\u1ec9 s\u1ed1 \u0111\u1ed9 d\u00e0i hai c\u1ea1nh c\u1ee7a h\u00ecnh b\u00ecnh h\u00e0nh l\u00e0 $3 : 4$ v\u00e0 chu vi c\u1ee7a h\u00ecnh b\u00ecnh h\u00e0nh \u0111\u00f3 l\u00e0 $28\\, cm$. \u0110\u1ed9 d\u00e0i hai c\u1ea1nh k\u1ec1 c\u1ee7a h\u00ecnh b\u00ecnh h\u00e0nh l\u00e0: <\/span>","select":["A. $9\\, cm$ v\u00e0 $12\\, cm$ ","B. $6\\, cm$ v\u00e0 $8\\, cm$","C. $7,5\\, cm$ v\u00e0 $10\\, cm$ ","D. $12\\, cm$ v\u00e0 $16\\, cm$ "],"explain":" <span class='basic_left'> G\u1ecdi hai c\u1ea1nh c\u1ee7a h\u00ecnh b\u00ecnh h\u00e0nh l\u00e0: $a$ v\u00e0 $b$ $(a > b > 0)$ (cm) <br\/> Theo gi\u1ea3 thi\u1ebft: <br\/> $a:b=3:4 \\Rightarrow \\dfrac{a}{3}=\\dfrac{b}{4}$ <br\/> V\u00e0 $(a+b).2=28 \\Rightarrow a+b=14$ <br\/> T\u1eeb \u0111\u00f3, ta c\u00f3: <br\/> $\\dfrac{a}{3}=\\dfrac{b}{4}$$=\\dfrac{a+b}{3+4}=\\dfrac{14}{7}=2$ <br\/> $\\Rightarrow a=6\\, (cm); b=8 \\, (cm)$ <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 B. <\/span><\/span> ","column":2}]}],"id_ques":1391},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":10,"ques":" <span class='basic_left'> Cho $ABCD$ l\u00e0 h\u00ecnh b\u00ecnh h\u00e0nh th\u00ec: <\/span>","select":["A. $\\Delta ABC=\\Delta CDA$","B. $S_{ABC}=S_{CDA}$","C. Hai \u0111i\u1ec3m $C$ v\u00e0 $A$ \u0111\u1ed1i x\u1ee9ng v\u1edbi nhau qua trung \u0111i\u1ec3m c\u1ee7a $BD$.","D. C\u1ea3 3 c\u00e2u tr\u00ean \u0111\u1ec1u \u0111\u00fang "],"explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai4/lv3/img\/H814_K1_1.jpg' \/><\/center> X\u00e9t $\\Delta ABC$ v\u00e0 $\\Delta CDA$, c\u00f3: <br\/> + $AB=CD$ <br\/> + $\\widehat{B}=\\widehat{D}$ (t\u00ednh ch\u1ea5t h\u00ecnh b\u00ecnh h\u00e0nh) <br\/> + $BC=AD$ (t\u00ednh ch\u1ea5t h\u00ecnh b\u00ecnh h\u00e0nh) <br\/> $\\Rightarrow \\Delta ABC=\\Delta CDA$ (c - g - c) <br\/> $\\Rightarrow$ <b> C\u00e2u A \u0111\u00fang <\/b> <br\/> Do hai tam gi\u00e1c b\u1eb1ng nhau th\u00ec di\u1ec7n t\u00edch c\u1ee7a ch\u00fang b\u1eb1ng nhau. <br\/> $\\Rightarrow $ $S_{ABC}=S_{CDA}$ <br\/> $\\Rightarrow$ <b> C\u00e2u B \u0111\u00fang<\/b> <br\/> Trong h\u00ecnh b\u00ecnh h\u00e0nh hai \u0111\u01b0\u1eddng ch\u00e9o c\u1eaft nhau t\u1ea1i trung \u0111i\u1ec3m c\u1ee7a m\u1ed7i \u0111\u01b0\u1eddng. <br\/> $\\Rightarrow$ <b> C\u00e2u C \u0111\u00fang <\/b> <br\/> C\u1ea3 3 c\u00e2u A, B, C \u0111\u1ec1u \u0111\u00fang. <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 D. <\/span><\/span> ","column":1}]}],"id_ques":1392},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":10,"ques":" <span class='basic_left'> Chu vi c\u1ee7a h\u00ecnh b\u00ecnh h\u00e0nh $ABCD$ l\u00e0 $10\\, cm$, chu vi c\u1ee7a $\\Delta ABD$ l\u00e0 $9\\, cm$. \u0110\u1ed9 d\u00e0i c\u1ea1nh $BD$ l\u00e0: <\/span>","select":["A. $1\\, cm$","B. $2\\, cm$","C. $4\\, cm$","D. $6\\, cm$ "],"explain":" <span class='basic_left'> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai4/lv3/img\/H814_K1_2.jpg' \/><\/center> Chu vi h\u00ecnh b\u00ecnh h\u00e0nh $ABCD$ l\u00e0 $10\\, cm$, t\u1ee9c l\u00e0: <br\/> $(AB+AD).2=10$ <br\/> $\\Rightarrow AB+AD=5\\, (cm)$ <br\/> Chu vi c\u1ee7a $\\Delta ABD$ l\u00e0 $9\\, cm$, t\u1ee9c l\u00e0: <br\/> $AB+AD+BD=9\\, (cm)$ <br\/> $\\Rightarrow BD=9-(AB+AD)$ <br\/> $BD=9-5=4\\, (cm)$ <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 C. <\/span><\/span> ","column":2}]}],"id_ques":1393},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["25"]]],"list":[{"point":10,"width":20,"type_input":"","ques":"<span class='basic_left'> H\u00ecnh b\u00ecnh h\u00e0nh $ABCD$ nh\u01b0 h\u00ecnh v\u1ebd sau. T\u00ednh $x$. <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai4/lv3/img\/H814_K1_3.png' \/><\/center> <br\/> <b> \u0110\u00e1p \u00e1n: <\/b> <br\/> $x=\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}^o$ <\/span> ","hint":" Trong h\u00ecnh b\u00ecnh h\u00e0nh, hai g\u00f3c k\u1ec1 m\u1ed9t c\u1ea1nh c\u00f3 t\u1ed5ng s\u1ed1 \u0111o l\u00e0 $180^o$.","explain":" <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai4/lv3/img\/H814_K1_3.png' \/><\/center> <span class='basic_left'> Theo t\u00ednh ch\u1ea5t h\u00ecnh b\u00ecnh h\u00e0nh, ta c\u00f3: $\\widehat{A}+\\widehat{B}=180^o$ <br\/> $\\Rightarrow 4x+20^o+2x+10^o=180^o$ <br\/> $\\Rightarrow 6x=150^o$ <br\/> $\\Rightarrow x=25^o$ <br\/> <span class='basic_pink'> V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0: $25$. <\/span><\/span> "}]}],"id_ques":1394},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"multiple_choice","correct":[[3]],"list":[{"point":10,"ques":" <span class='basic_left'> Cho $\\Delta ABC$, tr\u1ef1c t\u00e2m $H$. C\u00e1c \u0111\u01b0\u1eddng th\u1eb3ng vu\u00f4ng g\u00f3c v\u1edbi $AB$ t\u1ea1i $B$, vu\u00f4ng g\u00f3c v\u1edbi $AC$ t\u1ea1i $C$ c\u1eaft nhau t\u1ea1i $D$. <br\/><br\/> <b> C\u00e2u 1:<\/b> $BDCH$ l\u00e0 h\u00ecnh g\u00ec? <\/span>","select":["A. H\u00ecnh thang","B. H\u00ecnh thang c\u00e2n","C. H\u00ecnh b\u00ecnh h\u00e0nh"],"explain":" <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai4/lv3/img\/H814_K1_4.jpg' \/><\/center> <span class='basic_left'> Theo gi\u1ea3 thi\u1ebft: $CH\\,\\,\\bot \\,AB;\\,\\,BD\\,\\bot \\,\\,AB\\Rightarrow CH\/\/BD$ <br\/> $BH\\,\\,\\bot \\,\\,AC;\\,\\,CD\\,\\bot \\,\\,AC\\Rightarrow BH\/\/CD$ <br\/> T\u1eeb \u0111\u00f3 suy ra $BHCD$ l\u00e0 h\u00ecnh b\u00ecnh h\u00e0nh ( d\u1ea5u hi\u1ec7u nh\u1eadn bi\u1ebft). <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 C. <\/span><\/span> ","column":3}]}],"id_ques":1395},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"fill_the_blank","correct":[[["180"]]],"list":[{"point":10,"width":20,"type_input":"","ques":"<span class='basic_left'> Cho $\\Delta ABC$, tr\u1ef1c t\u00e2m $H$. C\u00e1c \u0111\u01b0\u1eddng th\u1eb3ng vu\u00f4ng g\u00f3c v\u1edbi $AB$ t\u1ea1i $B$, vu\u00f4ng g\u00f3c v\u1edbi $AC$ t\u1ea1i $C$ c\u1eaft nhau t\u1ea1i $D$. <br\/><br\/> <b> C\u00e2u 2:<\/b> T\u00ednh $\\widehat{BAC}+\\widehat{BDC}$. <br\/><br\/> <b> \u0110\u00e1p \u00e1n: <\/b> $\\widehat{BAC}+\\widehat{BDC}= \\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}^o$ <\/span> ","hint":" X\u00e9t t\u1ed5ng c\u00e1c g\u00f3c trong t\u1ee9 gi\u00e1c $ABCD$.","explain":" <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai4/lv3/img\/H814_K1_4.jpg' \/><\/center> <span class='basic_left'> Trong t\u1ee9 gi\u00e1c $ABDC$: <br\/> $\\widehat{BAC}+\\widehat{ABD}+\\widehat{ACD}+\\widehat{BDC}={{360}^{o}}$ (t\u1ed5ng c\u00e1c g\u00f3c trong t\u1ee9 gi\u00e1c) <br\/> $\\begin{align} & \\Rightarrow \\widehat{BAC}+{{90}^{o}}+{{90}^{o}}+\\widehat{BDC}={{360}^{o}} \\\\ & \\Rightarrow \\widehat{BAC}+\\widehat{BDC}={{360}^{o}}-{{180}^{o}}={{180}^{o}} \\\\ \\end{align}$ <br\/> <span class='basic_pink'> V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $180$. <\/span><\/span> "}]}],"id_ques":1396},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"fill_the_blank","correct":[[["2"]]],"list":[{"point":10,"width":20,"type_input":"","ques":"<span class='basic_left'> Cho $\\Delta ABC$, tr\u1ef1c t\u00e2m $H$. C\u00e1c \u0111\u01b0\u1eddng th\u1eb3ng vu\u00f4ng g\u00f3c v\u1edbi $AB$ t\u1ea1i $B$, vu\u00f4ng g\u00f3c v\u1edbi $AC$ t\u1ea1i $C$ c\u1eaft nhau t\u1ea1i $D$. <br\/><br\/> <b> C\u00e2u 3:<\/b> G\u1ecdi $O$ v\u00e0 $M$ l\u1ea7n l\u01b0\u1ee3t l\u00e0 trung \u0111i\u1ec3m $AD$ v\u00e0 $BC$. \u0110\u1ed9 d\u00e0i $AH$ g\u1ea5p m\u1ea5y l\u1ea7n \u0111\u1ed9 d\u00e0i $OM$? <br\/><br\/> <b> \u0110\u00e1p \u00e1n: <\/b> $AH\\,=\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}\\, OM$ <\/span> ","hint":" X\u00e9t xem $OM$ l\u00e0 g\u00ec trong tam gi\u00e1c $AHD$.","explain":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai4/lv3/img\/H814_K1_4.jpg' \/><\/center> <span class='basic_left'> Theo b\u00e0i $BM = CM$ <br\/> M\u00e0 $BHCD$ l\u00e0 h\u00ecnh b\u00ecnh h\u00e0nh (ch\u1ee9ng minh tr\u00ean) n\u00ean $M \\in HD$. <br\/> V\u1eady $H, M, D$ th\u1eb3ng h\u00e0ng. <br\/> X\u00e9t $\\Delta AHD$ c\u00f3: $HM = MD$ <br\/> M\u00e0 $AO = OD$ (gi\u1ea3 thi\u1ebft) <br\/> $\\Rightarrow OM$ l\u00e0 \u0111\u01b0\u1eddng trung b\u00ecnh c\u1ee7a $\\Delta AHD$ <br\/> $\\Rightarrow OM=\\dfrac{1}{2}AH$ <br\/> $\\Rightarrow AH=2OM$. <br\/> <span class='basic_pink'> V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $180$. <\/span><\/span> "}]}],"id_ques":1397},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"multiple_choice","correct":[[1]],"list":[{"point":10,"ques":" <span class='basic_left'> Cho h\u00ecnh thang vu\u00f4ng $ABCD$ ($\\widehat{A}=\\widehat{D}=90^o$, c\u00f3 $AB=\\dfrac{1}{2}CD$. G\u1ecdi $H$ l\u00e0 h\u00ecnh chi\u1ebfu c\u1ee7a $D$ tr\u00ean $AC$. G\u1ecdi $M, N$ l\u1ea7n l\u01b0\u1ee3t l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $HC$ v\u00e0 $HD$. <br\/><br\/> <b> C\u00e2u 1:<\/b> Ta ch\u1ee9ng minh \u0111\u01b0\u1ee3c $DNMC$ l\u00e0 h\u00ecnh thang, $ABMN$ l\u00e0 h\u00ecnh b\u00ecnh h\u00e0nh <b>\u0111\u00fang<\/b> hay <b>sai<\/b>? <\/span>","select":[" \u0110\u00fang"," Sai"],"explain":" <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai4/lv3/img\/H814_K1_5a.jpg' \/><\/center> <span class='basic_left'> Do $HM=MC; HN=DN$ (gi\u1ea3 thi\u1ebft) <br\/> $\\Rightarrow MN\/\/DC$ <br\/> $\\Rightarrow DNMC$ l\u00e0 h\u00ecnh thang. <br\/> Do $MN\/\/ DC$ (ch\u1ee9ng minh tr\u00ean) $\\Rightarrow MN\/\/AB$ (1) <br\/> C\u0169ng theo ch\u1ee9ng minh tr\u00ean th\u00ec $MN$ l\u00e0 \u0111\u01b0\u1eddng trung b\u00ecnh c\u1ee7a $\\Delta CHD$ <br\/> $\\Rightarrow MN=\\dfrac{1}{2}DC$ <br\/> $\\Rightarrow MN=AB\\,\\left(=\\dfrac{1}{2}DC \\right)$ (2) <br\/> T\u1eeb (1) v\u00e0 (2) suy ra $ABMN$ l\u00e0 h\u00ecnh b\u00ecnh h\u00e0nh <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n l\u00e0 \u0110\u00fang. <\/span><\/span> ","column":2}]}],"id_ques":1398},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"fill_the_blank","correct":[[["90"]]],"list":[{"point":10,"width":20,"type_input":"","ques":"<span class='basic_left'> Cho h\u00ecnh thang vu\u00f4ng $ABCD$ ($\\widehat{A}=\\widehat{D}=90^o$, c\u00f3 $AB=\\dfrac{1}{2}CD$. G\u1ecdi $H$ l\u00e0 h\u00ecnh chi\u1ebfu c\u1ee7a $D$ tr\u00ean $AC$. G\u1ecdi $M, N$ l\u1ea7n l\u01b0\u1ee3t l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $HC$ v\u00e0 $HD$. <br\/><br\/> <b> C\u00e2u 2:<\/b> T\u00ednh $\\widehat{BMD}$. <br\/><br\/> <b> \u0110\u00e1p \u00e1n: <\/b> $\\widehat{BMD}=\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}^o$ <\/span> ","hint":"Ch\u1ee9ng minh \u0111i\u1ec3m $N$ l\u00e0 tr\u1ef1c t\u00e2m c\u1ee7a tam gi\u00e1c $ADM$.","explain":" <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai4/lv3/img\/H814_K1_5b.jpg' \/><\/center> <span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> Ch\u1ee9ng minh $N$ l\u00e0 tr\u1ef1c t\u00e2m c\u1ee7a $\\Delta ADM$ <br\/> Ch\u1ec9 ra $BM\\bot DM$ <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> X\u00e9t $\\Delta ADM$ c\u00f3: <br\/> + $DN\\bot AM$ (gi\u1ea3 thi\u1ebft) <br\/> + $MN\\bot AD$ (do $MN \/\/ AB$) <br\/> $\\Rightarrow N$ l\u00e0 tr\u1ef1c t\u00e2m c\u1ee7a $\\Delta ADM$ <br\/> $\\Rightarrow AN \\bot DM$ <br\/> M\u00e0 $ABMN$ l\u00e0 h\u00ecnh b\u00ecnh h\u00e0nh n\u00ean $BM \/\/AN$. <br\/> $\\Rightarrow BM \\bot DM$ <br\/> Do \u0111\u00f3: $\\widehat {BMD}=90^o$ <br\/> <span class='basic_pink'> V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $90$. <\/span><\/span> "}]}],"id_ques":1399},{"time":24,"part":[{"title":"\u0110i\u1ec1n k\u1ebft qu\u1ea3 v\u00e0o \u00f4 tr\u1ed1ng","title_trans":"\u0110\u1ec1 chung cho ba c\u00e2u","temp":"fill_the_blank","correct":[[["72"]]],"list":[{"point":10,"width":20,"type_input":"","ques":"<span class='basic_left'> Cho h\u00ecnh thang vu\u00f4ng $ABCD$ ($\\widehat{A}=\\widehat{D}=90^o$, c\u00f3 $AB=\\dfrac{1}{2}CD$. G\u1ecdi $H$ l\u00e0 h\u00ecnh chi\u1ebfu c\u1ee7a $D$ tr\u00ean $AC$. G\u1ecdi $M, N$ l\u1ea7n l\u01b0\u1ee3t l\u00e0 trung \u0111i\u1ec3m c\u1ee7a $HC$ v\u00e0 $HD$. <br\/><br\/> <b> C\u00e2u 3:<\/b> $CD=16\\, cm; AD=6\\, cm$ <br\/> $S_{ABCD}=\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}\\, (cm^2)$ <\/span> ","hint":"Di\u1ec7n t\u00edch h\u00ecnh thang b\u1eb1ng n\u1eeda t\u00edch t\u1ed5ng hai \u0111\u00e1y v\u1edbi \u0111\u01b0\u1eddng cao.","explain":" V\u1ebd h\u00ecnh <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai4/lv3/img\/H814_K1_5c.jpg' \/><\/center> <span class='basic_left'> $S_{ABCD}=\\dfrac{1}{2}(AB+DC).AD$$=\\dfrac{1}{2}(8+16).6=72\\, (cm^2)$ <br\/> <span class='basic_pink'> V\u1eady c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $72$. <\/span><\/span> "}]}],"id_ques":1400}],"lesson":{"save":0,"level":3}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý