đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"M\u1ed7i kh\u1eb3ng \u0111\u1ecbnh sau \u0110\u00fang hay Sai","title_trans":"","temp":"true_false","correct":[["t","t","f","f","t"]],"list":[{"point":10,"image":"","col_name":["","\u0110\u00fang","Sai"],"arr_ques":["Hai xe kh\u00e1ch c\u00f9ng kh\u1edfi h\u00e0nh m\u1ed9t l\u00fac t\u1eeb $A$ \u0111\u1ebfn $B$ d\u00e0i $120 km$. Xe th\u1ee9 hai \u0111\u1ebfn s\u1edbm h\u01a1n xe th\u1ee9 nh\u1ea5t $30$ ph\u00fat. N\u1ebfu g\u1ecdi th\u1eddi gian c\u1ee7a xe th\u1ee9 nh\u1ea5t l\u00e0 $x$ th\u00ec bi\u1ec3u th\u1ee9c bi\u1ec3u di\u1ec5n v\u1eadn t\u1ed1c xe th\u1ee9 hai theo $x$ l\u00e0: $\\dfrac {120}{x-\\dfrac {1} {2}}$","M\u1ed9t h\u00ecnh vu\u00f4ng c\u00f3 chu vi l\u00e0 $16x\\,cm$. Bi\u1ec3u th\u1ee9c bi\u1ec3u di\u1ec5n di\u1ec7n t\u00edch c\u1ee7a h\u00ecnh vu\u00f4ng khi t\u0103ng m\u1ed7i c\u1ea1nh th\u00eam $5 cm$ l\u00e0: $(4x+5)^2$ ","M\u1ed9t v\u00f2i n\u01b0\u1edbc ch\u1ea3y m\u1ed9t m\u00ecnh $2$ gi\u1edd th\u00ec \u0111\u1ea7y b\u1ec3. N\u1ebfu ch\u1ea3y trong $40$ ph\u00fat th\u00ec v\u00f2i n\u01b0\u1edbc \u0111\u00f3 ch\u1ea3y \u0111\u01b0\u1ee3c $\\dfrac {40}{2}$ b\u1ec3.","Hi\u1ec7n nay con $x$ tu\u1ed5i. Hai n\u0103m n\u1eefa tu\u1ed5i con b\u1eb1ng $\\dfrac {1}{2}$ tu\u1ed5i b\u1ed1. Hi\u1ec7n nay tu\u1ed5i b\u1ed1 l\u00e0 $2x-2$.","M\u1ed9t khu v\u01b0\u1eddn h\u00ecnh ch\u1eef nh\u1eadt c\u00f3 chu vi $120m$ v\u00e0 di\u1ec7n t\u00edch $900 m^2$. T\u00ednh chi\u1ec1u d\u00e0i v\u00e0 chi\u1ec1u r\u1ed9ng c\u1ee7a khu v\u01b0\u1eddn. <br\/>N\u1ebfu g\u1ecdi chi\u1ec1u d\u00e0i khu v\u01b0\u1eddn l\u00e0 $x$ th\u00ec ph\u01b0\u01a1ng tr\u00ecnh bi\u1ec3u th\u1ecb b\u00e0i to\u00e1n t\u00ecm chi\u1ec1u d\u00e0i khu v\u01b0\u1eddn l\u00e0:<br\/> $x(60-x)=900$ ho\u1eb7c $\\left[x+\\dfrac {900}{x}\\right].2=120$"],"explain":[" <span class='basic_left'>\u0110\u00fang. V\u00ec<br\/> \u0110\u1ed5i $30$ ph\u00fat $=\\dfrac {1}{2}$ gi\u1edd.<br\/>V\u00ec xe th\u1ee9 hai \u0111\u1ebfn s\u1edbm h\u01a1n xe th\u1ee9 nh\u1ea5t $30$ ph\u00fat n\u00ean th\u1eddi gian xe th\u1ee9 hai \u00edt h\u01a1n xe th\u1ee9 nh\u1ea5t l\u00e0 $30$ ph\u00fat .<br\/>Do v\u1eady th\u1eddi gian xe th\u1ee9 hai l\u00e0: $x- \\dfrac {1}{2}$ (gi\u1edd)<br\/>V\u1eady v\u1eadn t\u1ed1c c\u1ee7a xe th\u1ee9 hai l\u00e0 $\\dfrac {120}{x-\\dfrac {1}{2}}\\,(km\/h)$<\/span>","<br\/><span class='basic_left'> \u0110\u00fang. V\u00ec <br\/>H\u00ecnh vu\u00f4ng c\u00f3 chu vi l\u00e0 $16x\\,cm$ n\u00ean \u0111\u1ed9 d\u00e0i m\u1ed7i c\u1ea1nh l\u00e0 $4x\\,cm$<br\/>Khi t\u0103ng m\u1ed7i c\u1ea1nh th\u00eam $5 cm$ th\u00ec \u0111\u1ed9 d\u00e0i m\u1ed7i c\u1ea1nh l\u00e0 $4x+5\\,(cm)$.<br\/>Di\u1ec7n t\u00edch c\u1ee7a h\u00ecnh vu\u00f4ng sau khi t\u0103ng \u0111\u1ed9 d\u00e0i c\u1ea1nh l\u00e0 $(4x+5)^2\\,(cm^2)$<\/span>","<br\/><span class='basic_left'> Sai. V\u00ec <br\/>\u0110\u1ed5i $40$ ph\u00fat $= \\dfrac {2}{3}$ gi\u1edd.<br\/>M\u1ed9t gi\u1edd v\u00f2i ch\u1ea3y \u0111\u01b0\u1ee3c $\\dfrac {2}{6}=\\dfrac{1}{3}$ b\u1ec3.<\/span>","<br\/><span class='basic_left'> Sai. V\u00ec<br\/> Tu\u1ed5i con hai n\u0103m n\u1eefa l\u00e0 $x+2$.<br\/>Tu\u1ed5i b\u1ed1 hai n\u0103m n\u1eefa l\u00e0 $2(x+2)$<br\/>Tu\u1ed5i b\u1ed1 hi\u1ec7n nay l\u00e0 $2(x+2)-2=2x+2$<\/span>","<br\/><span class='basic_left'>\u0110\u00fang. V\u00ec<br\/>G\u1ecdi chi\u1ec1u d\u00e0i m\u1ea3nh v\u01b0\u1eddn l\u00e0 $x$ ($m, x>0$)<br\/> <b>C\u00e1ch 1:<\/b> Chi\u1ec1u r\u1ed9ng m\u1ea3nh v\u01b0\u1eddn l\u00e0 <br\/>$120:2-x=60-x\\,(m)$<br\/>V\u00ec di\u1ec7n t\u00edch m\u1ea3nh v\u01b0\u1eddn l\u00e0 $900m^2$ n\u00ean ta c\u00f3 ph\u01b0\u01a1ng tr\u00ecnh: $x(60-x)=900$<br\/> <b>C\u00e1ch 2:<\/b> Chi\u1ec1u r\u1ed9ng m\u1ea3nh v\u01b0\u1eddn l\u00e0 $\\dfrac {900}{x}\\,(m)$<br\/>V\u00ec m\u1ea3nh v\u01b0\u1eddn c\u00f3 chu vi l\u00e0 $120m$ n\u00ean ta c\u00f3 ph\u01b0\u01a1ng tr\u00ecnh <br\/>$\\left[x+\\dfrac{900}{x}\\right].2=120$<\/span>"]}]}],"id_ques":981},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["50"]]],"list":[{"point":10,"width":50,"type_input":"","input_hint":"","ques":"<span class='basic_left'>B\u1ea1n H\u1ea3i \u0111\u1ed1 b\u1ea1n Nam: \u201cN\u1ebfu b\u1ea1n l\u1ea5y $5$ l\u1ea7n tu\u1ed5i b\u1ed1 m\u00ecnh sau $5$ n\u0103m n\u1eefa tr\u1eeb \u0111i $5$ l\u1ea7n tu\u1ed5i c\u1ee7a b\u1ed1 m\u00ecnh c\u00e1ch \u0111\u00e2y $5$ n\u0103m s\u1ebd \u0111\u01b0\u1ee3c m\u1ed9t s\u1ed1 b\u1eb1ng s\u1ed1 tu\u1ed5i c\u1ee7a b\u1ed1 m\u00ecnh hi\u1ec7n nay. \u0110\u1ed1 b\u1ea1n n\u0103m nay b\u1ed1 m\u00ecnh bao nhi\u00eau tu\u1ed5i?\u201d<br\/><b>\u0110\u00e1p s\u1ed1:<\/b> $\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}$(tu\u1ed5i)<\/span>","hint":"G\u1ecdi tu\u1ed5i c\u1ee7a b\u1ed1 H\u1ea3i hi\u1ec7n nay l\u00e0 \u1ea9n $x$.","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai21/lv3/img\/D8_B21K1.3.png' \/><\/center>G\u1ecdi tu\u1ed5i c\u1ee7a b\u1ed5 H\u1ea3i hi\u1ec7n nay l\u00e0 $x$ (tu\u1ed5i, $x\\in \\mathbb N^*$).<br\/>S\u1ed1 tu\u1ed5i c\u1ee7a b\u1ed1 H\u1ea3i $5$ n\u0103m n\u1eefa l\u00e0 $x+5$ tu\u1ed5i.<br\/>S\u1ed1 tu\u1ed5i b\u1ed1 H\u1ea3i c\u00e1ch \u0111\u00e2y $5$ n\u0103m l\u00e0 $x-5$ tu\u1ed5i.<br\/>Theo d\u1eef ki\u1ec7n b\u00e0i to\u00e1n ta c\u00f3: $5(x+5)-5(x-5)=x\\\\ \\Leftrightarrow 5x+25-5x+25=x\\\\ \\Leftrightarrow x=50\\,\\,\\,\\text{(th\u1ecfa m\u00e3n)}$<br\/>V\u1eady hi\u1ec7n nay b\u1ed1 H\u1ea3i $50$ tu\u1ed5i.<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $50$<\/span><br\/><\/span>"}]}],"id_ques":982},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["10"]]],"list":[{"point":10,"width":50,"type_input":"","input_hint":"","ques":"M\u1ed9t ph\u00f2ng h\u1ecdc c\u00f3 m\u1ed9t s\u1ed1 d\u00e3y gh\u1ebf, c\u00f3 t\u1ed5ng c\u1ed9ng $40$ ch\u1ed7 ng\u1ed3i. Do ph\u1ea3i x\u1ebfp $55$ ch\u1ed7 n\u00ean ng\u01b0\u1eddi ta ph\u1ea3i k\u00ea th\u00eam $1$ d\u00e3y gh\u1ebf v\u00e0 m\u1ed7i d\u00e3y gh\u1ebf ng\u1ed3i th\u00eam $1$ ch\u1ed7. H\u1ecfi l\u00fac \u0111\u1ea7u c\u00f3 bao nhi\u00eau d\u00e3y gh\u1ebf trong l\u1edbp h\u1ecdc? (Bi\u1ebft r\u1eb1ng m\u1ed7i d\u00e3y gh\u1ebf ng\u1ed3i kh\u00f4ng qu\u00e1 $5$ ng\u01b0\u1eddi)<br\/><b>\u0110\u00e1p s\u1ed1:<\/b> $\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}$(d\u00e3y gh\u1ebf)","hint":"G\u1ecdi s\u1ed1 d\u00e3y gh\u1ebf ban \u0111\u1ea7u l\u00e0 $x$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> G\u1ecdi s\u1ed1 d\u00e3y gh\u1ebf ban \u0111\u1ea7u l\u00e0 \u1ea9n.<br\/><b>B\u01b0\u1edbc 2:<\/b> Bi\u1ec3u di\u1ec5n s\u1ed1 ch\u1ed7 ng\u1ed3i ban \u0111\u1ea7u theo \u1ea9n.<br\/><b>B\u01b0\u1edbc 3:<\/b> Bi\u1ec3u di\u1ec5n ch\u1ed7 ng\u1ed3i sau khi th\u00eam d\u00e3y gh\u1ebf theo \u1ea9n<br\/><b>B\u01b0\u1edbc 4:<\/b> L\u1eadp ph\u01b0\u01a1ng tr\u00ecnh v\u00e0 gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh.<br\/>L\u1eadp b\u1ea3ng:<br\/><table><tr><th><\/th><th>S\u1ed1 d\u00e3y<\/th><th>S\u1ed1 ch\u1ed7 ng\u1ed3i<\/th><th>S\u1ed1 ch\u1ed7 m\u1ed7i d\u00e3y<\/th><\/tr><tr><td>Ban \u0111\u1ea7u<\/td><td>$x$<\/td><td>$44$<\/td><td>$\\dfrac {40}{x}$<\/td><\/tr><tr><td>Khi l\u00e0m vi\u1ec7c<\/td><td>$x+1$<\/td><td>$55$<\/td><td>$\\dfrac {55}{x-1}$<\/td><\/tr><\/table><br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/>G\u1ecdi s\u1ed1 d\u00e3y gh\u1ebf ban \u0111\u1ea7u l\u00e0 $x$ (d\u00e3y gh\u1ebf, $x\\in \\mathbb N^*, \\,x>8$)<br\/>V\u00ec c\u00f3 t\u1ed5ng c\u1ed9ng $40$ ch\u1ed7 ng\u1ed3i n\u00ean s\u1ed1 ch\u1ed7 ng\u1ed3i \u1edf m\u1ed7i d\u00e3y gh\u1ebf l\u00e0 $\\dfrac {40}{x}$ (ch\u1ed7)<br\/>Sau khi th\u00eam $1$ d\u00e3y gh\u1ebf th\u00ec s\u1ed1 d\u00e3y gh\u1ebf m\u1edbi l\u00e0 $x+1$ (d\u00e3y gh\u1ebf)<br\/>Khi \u0111\u00f3, s\u1ed1 ch\u1ed7 ng\u1ed3i m\u1ed7i d\u00e3y l\u00e0 $\\dfrac {55}{x+1}$ (ch\u1ed7)<br\/>V\u00ec m\u1ed7i d\u00e3y ph\u1ea3i ng\u1ed3i th\u00eam $1$ ch\u1ed7 n\u00ean ta c\u00f3 ph\u01b0\u01a1ng tr\u00ecnh :<br\/>$\\dfrac {55}{x+1}-\\dfrac {40}{x}=1\\\\ \\Leftrightarrow 55x-40(x+1)=x(x+1)\\\\ \\Leftrightarrow x^2-14x+40=0\\\\ \\Leftrightarrow x^2-10x-4x+40=0\\\\ \\Leftrightarrow x(x-10)-4(x-10)=0\\\\ \\Leftrightarrow (x-10)(x-4)=0\\\\ \\Leftrightarrow \\left[\\begin{align}&x=10\\,\\,\\,\\text{(th\u1ecfa m\u00e3n)}\\\\&x=4\\,\\,\\,\\text{(lo\u1ea1i)}\\\\ \\end{align}\\right.$<br\/>V\u1eady ban \u0111\u1ea7u l\u1edbp h\u1ecdc c\u00f3 $10$ d\u00e3y gh\u1ebf<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $10$<\/span><br\/><\/span>"}]}],"id_ques":983},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":10,"ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai21/lv3/img\/12.jpg' \/><\/center>M\u1ed9t ng\u01b0\u1eddi \u0111i t\u1eeb $A$ \u0111\u1ebfn $B$ v\u1edbi v\u1eadn t\u1ed1c $24 km\/h$ r\u1ed3i \u0111i ti\u1ebfp \u0111\u1ebfn $C$ v\u1edbi v\u1eadn t\u1ed1c $32 km\/h$. T\u00ednh qu\u00e3ng \u0111\u01b0\u1eddng $AB$ bi\u1ebft qu\u00e3ng \u0111\u01b0\u1eddng $AB$ d\u00e0i h\u01a1n qu\u00e3ng \u0111\u01b0\u1eddng $BC$ l\u00e0 $6 km$ v\u00e0 v\u1eadn t\u1ed1c trung b\u00ecnh tr\u00ean c\u1ea3 qu\u00e3ng \u0111\u01b0\u1eddng l\u00e0 $27 km\/h.$","select":["A. $30\\,km$","B. $40\\,km$","C. $50\\,km$"],"hint":"V\u1eadn t\u1ed1c trung b\u00ecnh $=$ T\u1ed5ng qu\u00e3ng \u0111\u01b0\u1eddng \u0111i \u0111\u01b0\u1ee3c $:$ t\u1ed5ng th\u1eddi gian \u0111i h\u1ebft qu\u00e3ng \u0111\u01b0\u1eddng.<br\/>Bi\u1ec3u di\u1ec5n th\u1eddi gian ng\u01b0\u1eddi \u0111\u00f3 \u0111i tr\u00ean t\u1eebng \u0111o\u1ea1n \u0111\u01b0\u1eddng v\u00e0 tr\u00ean c\u1ea3 \u0111o\u1ea1n \u0111\u01b0\u1eddng $AB$","explain":" <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai21/lv3/img\/D8_B21K1.1.png' \/><\/center><span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> G\u1ecdi chi\u1ec1u d\u00e0i qu\u00e3ng \u0111\u01b0\u1eddng $AB$ l\u00e0 \u1ea9n<br\/><b>B\u01b0\u1edbc 2:<\/b> Bi\u1ec3u di\u1ec5n th\u1eddi gian ng\u01b0\u1eddi \u0111\u00f3 \u0111i tr\u00ean qu\u00e3ng \u0111\u01b0\u1eddng $AB$ v\u00e0 $BC$ theo \u1ea9n.<br\/><b>B\u01b0\u1edbc 3:<\/b> Bi\u1ec3u di\u1ec5n th\u1eddi gian ng\u01b0\u1eddi \u0111\u00f3 \u0111i tr\u00ean c\u1ea3 qu\u00e3ng \u0111\u01b0\u1eddng $AC$ theo \u1ea9n <br\/><b>B\u01b0\u1edbc 4:<\/b> L\u1eadp ph\u01b0\u01a1ng tr\u00ecnh v\u00e0 gi\u1ea3i.<br\/>L\u1eadp b\u1ea3ng:<br\/><table><tr><th><\/th><th>Qu\u00e3ng \u0111\u01b0\u1eddng ($km$)<\/th><th>V\u1eadn t\u1ed1c $(km\/h)$<\/th><th>Th\u1eddi gian (gi\u1edd)<\/th><\/tr><tr><td>Tr\u00ean $AB$<\/td><td>$x$<\/td><td>$24$<\/td><td>$\\dfrac{x}{24}$<\/td><\/tr><tr><td>Tr\u00ean $BC$<\/td><td>$x-6$<\/td><td>$32$<\/td><td>$\\dfrac{x-6}{32}$<\/td><\/tr><tr><td>Tr\u00ean $AC$<\/td><td>$2x-6$<\/td><td>$27$<\/td><td>$\\dfrac{2x-6}{27}$<\/td><\/tr><\/table><br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/>G\u1ecdi chi\u1ec1u d\u00e0i qu\u00e3ng \u0111\u01b0\u1eddng $AB$ l\u00e0 $x$ $(km, x > 0)$ <br\/> Qu\u00e3ng \u0111\u01b0\u1eddng $BC$ d\u00e0i l\u00e0 $x-6$ $(km)$<br\/>Qu\u00e3ng \u0111\u01b0\u1eddng $AC$ d\u00e0i l\u00e0 $2x-6$ $(km)$<br\/>Th\u1eddi gian ng\u01b0\u1eddi \u0111\u00f3 \u0111i tr\u00ean qu\u00e3ng \u0111\u01b0\u1eddng $AB$ l\u00e0 $\\dfrac {x}{24}$ (gi\u1edd)<br\/>Th\u1eddi gian ng\u01b0\u1eddi \u0111\u00f3 \u0111i h\u1ebft qu\u00e3ng \u0111\u01b0\u1eddng $BC$ l\u00e0 $\\dfrac {x-6}{32}$ (gi\u1edd)<br\/>Th\u1eddi gian \u0111i h\u1ebft qu\u00e3ng \u0111\u01b0\u1eddng $AC$ t\u00ednh theo v\u1eadn t\u1ed1c trung b\u00ecnh l\u00e0 $\\dfrac {2x-6}{27}\\,(km\/h)$<br\/>Ta c\u00f3 ph\u01b0\u01a1ng tr\u00ecnh:<br\/> $\\dfrac {x}{24}+\\dfrac {x-6}{32}=\\dfrac {2x-6}{27}\\\\ \\Leftrightarrow 36x+27(x-6)=32(2x-6)\\\\ \\Leftrightarrow x=30\\,\\,\\text {(th\u1ecfa m\u00e3n)}$<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 A<\/span><br\/><b>Ghi nh\u1edb: <\/b>V\u1eadn t\u1ed1c trung b\u00ecnh $=$ T\u1ed5ng qu\u00e3ng \u0111\u01b0\u1eddng \u0111i \u0111\u01b0\u1ee3c $:$ t\u1ed5ng th\u1eddi gian \u0111i h\u1ebft qu\u00e3ng \u0111\u01b0\u1eddng.<\/span>","column":3}]}],"id_ques":984},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["2"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"<center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai21/lv3/img\/11.jpg' \/><\/center>M\u1ed9t \u00f4t\u00f4 ph\u1ea3i \u0111i qu\u00e3ng \u0111\u01b0\u1eddng $AB$ d\u00e0i $60km$ trong m\u1ed9t th\u1eddi gian nh\u1ea5t \u0111\u1ecbnh. \u00d4t\u00f4 \u0111i n\u1eeda \u0111\u1ea7u qu\u00e3ng \u0111\u01b0\u1eddng v\u1edbi v\u1eadn t\u1ed1c h\u01a1n d\u1ef1 \u0111\u1ecbnh $10km\/h$ v\u00e0 \u0111i n\u1eeda sau qu\u00e3ng \u0111\u01b0\u1eddng v\u1edbi v\u1eadn t\u1ed1c k\u00e9m h\u01a1n d\u1ef1 \u0111\u1ecbnh $6km\/h$. Bi\u1ebft \u00f4t\u00f4 \u0111\u1ebfn $B$ \u0111\u00fang th\u1eddi gian \u0111\u00e3 \u0111\u1ecbnh. T\u00ednh th\u1eddi gian \u00f4 t\u00f4 d\u1ef1 \u0111\u1ecbnh \u0111i qu\u00e3ng \u0111\u01b0\u1eddng $AB.$<br\/><b>\u0110\u00e1p s\u1ed1: <\/b> $\\FormInput[40][bl_elm_true basic_elm basic_blank basic_blank_part]{}$(gi\u1edd)","hint":"G\u1ecdi v\u1eadn t\u1ed1c d\u1ef1 \u0111\u1ecbnh c\u1ee7a \u00f4 t\u00f4 l\u00e0 \u1ea9n s\u1ed1. ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> G\u1ecdi v\u1eadn t\u1ed1c d\u1ef1 \u0111\u1ecbnh c\u1ee7a \u00f4 t\u00f4 l\u00e0 \u1ea9n s\u1ed1.<br\/><b>B\u01b0\u1edbc 2:<\/b> Bi\u1ec3u di\u1ec5n th\u1eddi gian d\u1ef1 \u0111\u1ecbnh v\u00e0 th\u1eddi gian th\u1ee9c t\u1ebf theo \u1ea9n s\u1ed1<br\/><b>B\u01b0\u1edbc 3:<\/b> L\u1eadp ph\u01b0\u01a1ng tr\u00ecnh v\u00e0 gi\u1ea3i<br\/><b>B\u01b0\u1edbc 4:<\/b> T\u00ecm th\u1eddi gian d\u1ef1 \u0111\u1ecbnh r\u1ed3i k\u1ebft lu\u1eadn.<br\/>L\u1eadp b\u1ea3ng:<br\/><table><tr><th><\/th><th>D\u1ef1 \u0111\u1ecbnh<\/th><th>N\u1eeda \u0111\u01b0\u1eddng \u0111\u1ea7u<\/th><th>N\u1eeda \u0111\u01b0\u1eddng sau<\/th><\/tr><tr><td>Qu\u00e3ng \u0111\u01b0\u1eddng ($km$)<\/td><td>$60$<\/td><td>$30$<\/td><td>$30$<\/td><\/tr><tr><td>V\u1eadn t\u1ed1c<\/td><td>$x$<\/td><td>$x+10$<\/td><td>$x-6$<\/td><\/tr><tr><td>Th\u1eddi gian<\/td><td>$\\dfrac{60}{x}$<\/td><td>$\\dfrac{30}{x+10}$<\/td><td>$\\dfrac{30}{x-6}$<\/td><\/tr><\/table><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/> G\u1ecdi v\u1eadn t\u1ed1c d\u1ef1 \u0111\u1ecbnh c\u1ee7a \u00f4 t\u00f4 l\u00e0 $x$ ($km\/h$, $x>0$)<br\/>Th\u1eddi gian \u00f4 t\u00f4 \u0111\u1ecbnh \u0111i h\u1ebft qu\u00e3ng \u0111\u01b0\u1eddng $AB$ l\u00e0 $\\dfrac{60}{x}$ (gi\u1edd)<br\/>\u00d4 t\u00f4 \u0111i n\u1eeda qu\u00e3ng \u0111\u01b0\u1eddng \u0111\u1ea7u ($=30\\,km$) v\u1edbi v\u1eadn t\u1ed1c l\u00e0 $x+10$ ($km\/h$)<br\/>Th\u1eddi gian \u00f4 t\u00f4 \u0111i h\u1ebft n\u1eefa qu\u00e3ng \u0111\u01b0\u1eddng \u0111\u1ea7u l\u00e0 $\\dfrac{30}{x+10}$ (gi\u1edd)<br\/>\u00d4 t\u00f4 \u0111i n\u1eeda qu\u00e3ng \u0111\u01b0\u1eddng sau v\u1edbi v\u1eadn t\u1ed1c $x-6$ ($km\/h$)<br\/>Th\u1eddi gian \u00f4 t\u00f4 \u0111i h\u1ebft n\u1eefa qu\u00e3ng \u0111\u01b0\u1eddng sau l\u00e0 $\\dfrac {x}{x-6}$ (gi\u1edd)<br\/>V\u00ec \u00f4 t\u00f4 \u0111\u1ebfn $B$ \u0111\u00fang th\u1eddi gian quy \u0111\u1ecbnh n\u00ean ta c\u00f3 ph\u01b0\u01a1ng tr\u00ecnh:<br\/>$\\dfrac{60}{x}=\\dfrac{30}{x+10}+\\dfrac {30}{x-6}\\\\ \\Leftrightarrow \\dfrac{2(x+10)(x-6)}{x(x+10)(x-6)}=\\dfrac{x(x-6)}{x(x+10)(x-6)}+\\dfrac {x(x+10)}{x(x+10)(x-6)}\\\\ \\Rightarrow 2(x^2+4x-60)=x^2-6x+x^2+10x\\\\ \\Leftrightarrow 4x=120\\\\ \\Leftrightarrow x=30\\,\\,\\text{(th\u1ecfa m\u00e3n)}$<br\/>V\u1eady th\u1eddi gian \u00f4 t\u00f4 d\u1ef1 \u0111\u1ecbnh \u0111i h\u1ebft qu\u00e3ng \u0111\u01b0\u1eddng $AB$ l\u00e0 $\\dfrac {60}{30}=2$ (gi\u1edd) <br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 $2$ <\/span><\/span>"}]}],"id_ques":985},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":10,"ques":"M\u1ed9t ca n\u00f4 xu\u00f4i d\u00f2ng t\u1eeb $A$ \u0111\u1ebfn $B$ h\u1ebft $3$ gi\u1edd. Sau \u0111\u00f3, ca n\u00f4 tr\u1edf l\u1ea1i ng\u01b0\u1ee3c t\u1eeb $B$ \u0111\u1ebfn b\u00ean $C$ c\u00e1ch $A$ m\u1ed9t kho\u1ea3ng b\u1eb1ng $\\dfrac {1}{3}AB$ h\u1ebft $2$ gi\u1edd $24$ ph\u00fat. T\u00ednh \u0111\u1ed9 d\u00e0i \u0111o\u1ea1n s\u00f4ng $AB$ bi\u1ebft m\u1ed9t kh\u00f3m b\u00e8o tr\u00f4i tr\u00ean s\u00f4ng \u0111\u00f3 $12$ ph\u00fat \u0111\u01b0\u1ee3c $400m.$","select":["A. $36\\,km$","B. $20,57\\,km$","C. $4 \\,km$","D. $72\\,km$"],"hint":"V\u1eadn t\u1ed1c ca n\u00f4 kh\u00f4ng \u0111\u1ed5i.<br\/>V\u1eadn t\u1ed1c d\u00f2ng n\u01b0\u1edbc $=$ v\u1eadn t\u1ed1c c\u1ee7a nh\u00f3m b\u00e8o.","explain":" <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/daiso/bai21/lv3/img\/D8_B21K1.2.png' \/><\/center><span class='basic_left'>\u0110\u1ed5i: $12$ ph\u00fat $=\\dfrac{1}{5}$ gi\u1edd; $2$ gi\u1edd $24$ ph\u00fat $= \\dfrac{12}{5}$ gi\u1edd<br\/>V\u1eadn t\u1ed1c d\u00f2ng n\u01b0\u1edbc $=$ v\u1eadn t\u1ed1c c\u1ee7a nh\u00f3m b\u00e8o $= 0,4:\\dfrac {1}{5}=2 \\,km\/h$<br\/>G\u1ecdi \u0111\u1ed9 d\u00e0i \u0111o\u1ea1n s\u00f4ng $AB$ l\u00e0 $x$ ($km,\\,x > 0$). <br\/>V\u1eadn t\u1ed1c c\u1ee7a ca n\u00f4 khi xu\u00f4i d\u00f2ng t\u1eeb $A$ \u0111\u1ebfn $B$ l\u00e0 $\\dfrac {x}{3}$ ($km\/h$)<br\/>Qu\u00e3ng s\u00f4ng ca n\u00f4 \u0111i ng\u01b0\u1ee3c d\u00f2ng l\u00e0 $x-\\dfrac {1}{3}x=\\dfrac{2}{3}x$ ($km$)<br\/>V\u1eadn t\u1ed1c ca n\u00f4 \u0111i ng\u01b0\u1ee3c d\u00f2ng l\u00e0 $\\dfrac {2}{3}x:\\dfrac {12}{5}=\\dfrac {5}{18}x$ <br\/>V\u00ec v\u1eadn t\u1ed1c ca n\u00f4 kh\u00f4ng \u0111\u1ed5i n\u00ean ta c\u00f3 ph\u01b0\u01a1ng tr\u00ecnh:<br\/>$\\dfrac {x}{3}-2=\\dfrac {5}{18}x+2\\\\ \\Leftrightarrow \\dfrac {x}{3}=\\dfrac {5}{18}x+4\\\\ \\Leftrightarrow 6x=5x+72\\\\ \\Leftrightarrow x=72\\,\\,\\text {(km)}$<br\/><span class='basic_pink'>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 D<\/span><br\/><b> Ghi nh\u1edb:<\/b> V\u1eadn t\u1ed1c d\u00f2ng n\u01b0\u1edbc $=$ v\u1eadn t\u1ed1c c\u1ee7a nh\u00f3m b\u00e8o tr\u00f4i tr\u00ean s\u00f4ng.<br\/>$v=\\dfrac{s}{t}$ (trong \u0111\u00f3, $s$ l\u00e0 qu\u00e3ng \u0111\u01b0\u1eddng, $v$ l\u00e0 v\u1eadn t\u1ed1c, $t$ l\u00e0 th\u1eddi gian)<\/span>","column":2}]}],"id_ques":986},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["1234"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"T\u00ecm m\u1ed9t s\u1ed1 t\u1ef1 nhi\u00ean c\u00f3 $4$ ch\u1eef s\u1ed1. Bi\u1ebft n\u1ebfu vi\u1ebft th\u00eam ch\u1eef s\u1ed1 $5$ v\u00e0o b\u00ean tr\u00e1i th\u00ec \u0111\u01b0\u1ee3c m\u1ed9t s\u1ed1 m\u1edbi l\u1edbn h\u01a1n s\u1ed1 \u0111\u00f3 khi vi\u1ebft th\u00eam ch\u1eef s\u1ed1 $5$ v\u00e0o b\u00ean ph\u1ea3i l\u00e0 $38889$ \u0111\u01a1n v\u1ecb.<br\/><b> \u0110\u00e1p s\u1ed1: <\/b> _input_ ","hint":"G\u1ecdi s\u1ed1 c\u1ea7n t\u00ecm c\u00f3 d\u1ea1ng $\\overline{abcd}$. ","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> G\u1ecdi s\u1ed1 c\u1ea7n t\u00ecm c\u00f3 d\u1ea1ng $\\overline {abcd}$<br\/><b>B\u01b0\u1edbc 2:<\/b> B\u01b0\u1edbc di\u1ec5n hai s\u1ed1 m\u1edbi theo s\u1ed1 ban \u0111\u1ea7u<br\/><b>B\u01b0\u1edbc 3:<\/b> L\u1eadp ph\u01b0\u01a1ng tr\u00ecnh.<br\/><b>B\u01b0\u1edbc 4:<\/b> \u00c1p d\u1ee5ng ph\u01b0\u01a1ng ph\u00e1p ph\u00e2n t\u00edch c\u1ea5u t\u1ea1o s\u1ed1 \u0111\u1ec3 gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh.<br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/>G\u1ecdi s\u1ed1 ph\u1ea3i t\u00ecm l\u00e0 $\\overline{abcd}$. ($a \\ne 0$)<br\/>Vi\u1ebft th\u00eam ch\u1eef s\u1ed1 $5$ v\u00e0o b\u00ean tr\u00e1i \u0111\u01b0\u1ee3c m\u1ed9t s\u1ed1 c\u00f3 $5$ ch\u1eef s\u1ed1 m\u1edbi l\u00e0: $\\overline{5abcd}$.<br\/>Vi\u1ebft th\u00eam ch\u1eef s\u1ed1 $5$ v\u00e0o b\u00ean ph\u1ea3i \u0111\u01b0\u1ee3c m\u1ed9t s\u1ed1 c\u00f3 $5$ ch\u1eef s\u1ed1 m\u1edbi l\u00e0: $\\overline{abcd5}$.<br\/>Theo gi\u1ea3 thi\u1ebft, ta c\u00f3 ph\u01b0\u01a1ng tr\u00ecnh: <br\/>$\\begin{aligned}& \\overline{5abcd}-\\overline{abcd5}=38889 \\\\ & \\Leftrightarrow 50000+\\overline{abcd}-(\\overline{abcd0}+5)=38889 \\\\ & \\Leftrightarrow\\overline{abcd}-10\\overline{abcd}=-50000+5+38889 \\\\ & \\Leftrightarrow -9\\overline{abcd}=-11106 \\\\ & \\Leftrightarrow \\overline{abcd}=1234 \\\\ \\end{aligned}$<br\/><span class='basic_pink'>V\u1eady s\u1ed1 ph\u1ea3i t\u00ecm l\u00e0 $1234$<\/span><br\/><b> Nh\u1eadn x\u00e9t: <\/b> Gi\u1ed1ng nh\u01b0 b\u00e0i to\u00e1n gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh b\u1eb1ng c\u00e1ch \u0111\u1eb7t \u1ea9n ph\u1ee5: Trong ph\u1ea7n gi\u1ea3i c\u1ee7a ph\u01b0\u01a1ng tr\u00ecnh tr\u00ean, ta coi $\\overline{abcd}$ l\u00e0 \u1ea9n c\u1ea7n t\u00ecm.<\/span>"}]}],"id_ques":987},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["20"],["30"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"<span class='basic_left'>Hai v\u00f2i n\u01b0\u1edbc c\u00f9ng ch\u1ea3y v\u00e0o b\u1ec3 th\u00ec trong $12$ ph\u00fat \u0111\u1ea7y b\u1ec3. N\u1ebfu m\u1ed9t m\u00ecnh v\u00f2i $1$ ch\u1ea3y trong $10$ ph\u00fat, v\u00f2i $2$ ch\u1ea3y trong $12$ ph\u00fat th\u00ec \u0111\u01b0\u1ee3c $90\\%$ b\u1ec3. H\u1ecfi n\u1ebfu m\u1ed7i v\u00f2i ch\u1ea3y m\u1ed9t m\u00ecnh th\u00ec sau bao l\u00e2u \u0111\u1ea7y b\u1ec3?<br\/><b> \u0110\u00e1p s\u1ed1: <\/b><br\/> V\u00f2i $1$: _input_ (ph\u00fat); V\u00f2i $2$: _input_ (ph\u00fat)<\/span>","hint":"\u0110\u00e2y l\u00e0 b\u00e0i to\u00e1n n\u0103ng su\u1ea5t. T\u00ednh th\u1eddi gian theo ph\u00fat.","explain":"<span class='basic_left'>G\u1ecdi th\u1eddi gian v\u00f2i m\u1ed9t ch\u1ea3y m\u1ed9t m\u00ecnh \u0111\u1ea7y b\u1ec3 l\u00e0 $x$ (ph\u00fat, $x>12$).<br\/>M\u1ed9t ph\u00fat v\u00f2i m\u1ed9t ch\u1ea3y \u0111\u01b0\u1ee3c $\\dfrac {1}{x}$ b\u1ec3.<br\/>$10$ ph\u00fat v\u00f2i $1$ ch\u1ea3y \u0111\u01b0\u1ee3c l\u00e0 $\\dfrac {10}{x}$ (b\u1ec3)<br\/>V\u00ec hai v\u00f2i c\u00f9ng ch\u1ea3y trong $12$ ph\u00fat th\u00ec \u0111\u1ea7y b\u1ec3 n\u00ean $1$ ph\u00fat c\u1ea3 hai v\u00f2i ch\u1ea3y \u0111\u01b0\u1ee3c $\\dfrac {1}{12}$ b\u1ec3.<br\/>Ta c\u00f3, $1$ ph\u00fat v\u00f2i $1$ ch\u1ea3y \u0111\u01b0\u1ee3c $\\dfrac {1}{x}$ b\u1ec3 n\u00ean $1$ ph\u00fat v\u00f2i $2$ ch\u1ea3y \u0111\u01b0\u1ee3c l\u00e0 $\\dfrac {1}{12}-\\dfrac {1}{x}$ (b\u1ec3)<br\/>V\u1eady trong $12$ ph\u00fat v\u00f2i $2$ ch\u1ea3y \u0111\u01b0\u1ee3c $12\\left(\\dfrac{1}{12}-\\dfrac {1}{x}\\right)$ (b\u1ec3)<br\/>V\u00ec khi \u0111\u00f3, hai v\u00f2i ch\u1ea3y \u0111\u01b0\u1ee3c $90\\%=\\dfrac {9}{10}$ (b\u1ec3) n\u00ean ta c\u00f3 ph\u01b0\u01a1ng tr\u00ecnh: <br\/>$\\dfrac {10}{x}+12\\left(\\dfrac{1}{12}-\\dfrac {1}{x}\\right)=\\dfrac {9}{10}\\\\ \\Leftrightarrow \\dfrac {10}{x}+1-\\dfrac {12}{x}=\\dfrac {9}{10}\\\\ \\Leftrightarrow \\dfrac {10}{x}-\\dfrac {12}{x}=\\dfrac {-1}{10}\\\\ \\Leftrightarrow \\dfrac {2}{x}=\\dfrac {1}{10}\\\\ \\Leftrightarrow x=20\\,\\,\\text {(th\u1ecfa m\u00e3n)}$ <br\/>V\u1eady m\u1ed9t m\u00ecnh v\u00f2i $1$ ch\u1ea3y trong $20$ ph\u00fat th\u00ec \u0111\u1ea7y b\u1ec3.<br\/>Ta c\u00f3, $1$ ph\u00fat v\u00f2i $2$ ch\u1ea3y \u0111\u01b0\u1ee3c l\u00e0 $\\dfrac{1}{12}-\\dfrac {1}{20}=\\dfrac{1}{30}$ b\u1ec3. Do \u0111\u00f3, v\u00f2i 2 ch\u1ea3y trong $30$ ph\u00fat th\u00ec \u0111\u1ea7y b\u1ec3.<br\/><span class='basic_pink'>V\u1eady c\u00e1c s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u1ea7n l\u01b0\u1ee3t l\u00e0 $20$ v\u00e0 $30$<\/span><br\/> Ngo\u00e0i c\u00e1ch gi\u1ea3i tr\u00ean, th\u00f4ng th\u01b0\u1eddng ch\u00fang ta \u0111\u1ed5i \u0111\u01a1n v\u1ecb th\u1eddi gian ra gi\u1edd r\u1ed3i l\u00e0m nh\u01b0 c\u00e1ch gi\u1ea3i sau:<br\/>\u0110\u1ed5i $10$ ph\u00fat $=\\dfrac {1}{6}$ gi\u1edd.<br\/>$12$ ph\u00fat $= \\dfrac {1}{5}$ gi\u1edd.<br\/>G\u1ecdi th\u1eddi gian v\u00f2i m\u1ed9t ch\u1ea3y m\u1ed9t m\u00ecnh \u0111\u1ea7y b\u1ec3 l\u00e0 $x$ (gi\u1edd).<br\/>M\u1ed9t gi\u1edd v\u00f2i m\u1ed9t ch\u1ea3y \u0111\u01b0\u1ee3c $\\dfrac {1}{x}$ b\u1ec3.<br\/>$\\dfrac {1}{6}$ (gi\u1edd) v\u00f2i $1$ ch\u1ea3y \u0111\u01b0\u1ee3c l\u00e0 $\\dfrac {1}{6x}$ (b\u1ec3)<br\/>V\u00ec hai v\u00f2i c\u00f9ng ch\u1ea3y trong $12$ ph\u00fat th\u00ec \u0111\u1ea7y b\u1ec3 n\u00ean $1$ gi\u1edd c\u1ea3 hai v\u00f2i ch\u1ea3y \u0111\u01b0\u1ee3c $5$ b\u1ec3.<br\/>Ta c\u00f3, $1$ gi\u1edd v\u00f2i $1$ ch\u1ea3y \u0111\u01b0\u1ee3c $\\dfrac {1}{x}$ b\u1ec3 n\u00ean $1$ gi\u1edd v\u00f2i $2$ ch\u1ea3y \u0111\u01b0\u1ee3c l\u00e0 $5-\\dfrac {1}{x}$ (b\u1ec3)<br\/>V\u1eady trong $\\dfrac {1}{5}$ gi\u1edd v\u00f2i $2$ ch\u1ea3y \u0111\u01b0\u1ee3c $\\dfrac {1}{5}\\left(5-\\dfrac {1}{x}\\right)$ (b\u1ec3)<br\/>V\u00ec khi \u0111\u00f3, hai v\u00f2i ch\u1ea3y \u0111\u01b0\u1ee3c $90\\%=\\dfrac {1}{10}$ (b\u1ec3) n\u00ean ta c\u00f3 ph\u01b0\u01a1ng tr\u00ecnh: <br\/>$\\dfrac {1}{6x}+\\dfrac {1}{5}\\left(5-\\dfrac {1}{x}\\right)= \\dfrac {9}{10}\\\\ \\Leftrightarrow x=\\dfrac {1}{3}$ <br\/>V\u1eady v\u00f2i 1 ch\u1ea3y trong $\\dfrac 1 3 $ gi\u1edd th\u00ec \u0111\u1ea7y b\u1ec3<br\/><b> Nh\u1eadn x\u00e9t:<\/b> \u0110\u1ed1i v\u1edbi m\u1ed9t s\u1ed1 b\u00e0i to\u00e1n d\u1ea1ng n\u0103ng su\u1ea5t \u0111\u1eb7c bi\u1ec7t (l\u00e0m chung - l\u00e0m ri\u00eang), t\u00f9y t\u1eebng s\u1ed1 li\u1ec7u b\u00e0i to\u00e1n, ta c\u00f3 th\u1ec3 gi\u1eef nguy\u00ean \u0111\u01a1n v\u1ecb \u0111o th\u1eddi gian \u1edf ph\u00fat \u0111\u1ec3 l\u1eadp ph\u01b0\u01a1ng tr\u00ecnh.<\/span>"}]}],"id_ques":988},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["5"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"M\u1ed9t \u0111\u1ed9i xe c\u1ea7n chuy\u00ean ch\u1edf $120$ t\u1ea5n h\u00e0ng. H\u00f4m l\u00e0m vi\u1ec7c c\u00f3 $2$ xe ph\u1ea3i r\u1eddi \u0111i l\u00e0m vi\u1ec7c kh\u00e1c. Do \u0111\u00f3 m\u1ed7i xe c\u00f2n l\u1ea1i ph\u1ea3i ch\u1edf th\u00eam $16$ t\u1ea5n h\u00e0ng. H\u1ecfi \u0111\u1ed9i xe c\u00f3 bao nhi\u00eau xe?<br\/><b> \u0110\u00e1p s\u1ed1:<\/b> _input_ (xe)","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> G\u1ecdi s\u1ed1 xe c\u1ee7a \u0111\u1ed9i xe l\u00e0 \u1ea9n.<br\/><b>B\u01b0\u1edbc 2:<\/b> Bi\u1ec3u di\u1ec5n s\u1ed1 t\u1ea5n h\u00e0ng m\u1ed7i xe ph\u1ea3i ch\u1edf ban \u0111\u1ea7u v\u00e0 trong th\u1ef1c t\u1ebf.<br\/><b>B\u01b0\u1edbc 3:<\/b> L\u1eadp ph\u01b0\u01a1ng tr\u00ecnh v\u00e0 gi\u1ea3i ph\u01b0\u01a1ng tr\u00ecnh.<br\/><b>B\u01b0\u1edbc 4:<\/b> Lo\u1ea1i nghi\u1ec7m (n\u1ebfu c\u00f3) r\u1ed3i k\u1ebft lu\u1eadn.<br\/>L\u1eadp b\u1ea3ng:<br\/><table><tr><th><\/th><th>T\u1ed5ng s\u1ed1 h\u00e0ng<\/th><th>S\u1ed1 xe<\/th><th>S\u1ed1 t\u1ea5n\/xe<\/th><\/tr><tr><td>Ban \u0111\u1ea7u<\/td><td>$120$<\/td><td>$x$<\/td><td>$\\dfrac {120}{x}$<\/td><\/tr><tr><td>Khi l\u00e0m vi\u1ec7c<\/td><td>$120$<\/td><td>$x-2$<\/td><td>$\\dfrac {120}{x-2}$<\/td><\/tr><\/table><br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/>G\u1ecdi s\u1ed1 xe ban \u0111\u1ea7u c\u1ee7a \u0111\u1ed9i xe l\u00e0 $x$ (xe, $x>0$)<br\/>S\u1ed1 t\u1ea5n h\u00e0ng m\u1ed7i xe ph\u1ea3i ch\u1edf l\u00e0 $\\dfrac {120}{x}$ (t\u1ea5n)<br\/>S\u1ed1 xe th\u1ef1c t\u1ebf tham gia ch\u1edf h\u00e0ng l\u00e0 $x-2$ (xe)<br\/>S\u1ed1 t\u1ea5n h\u00e0ng th\u1ef1c t\u1ebf m\u1ed7i xe ph\u1ea3i ch\u1edf l\u00e0 $\\dfrac {120}{x-2}$(t\u1ea5n)<br\/>Do m\u1ed7i xe c\u00f2n l\u1ea1i ph\u1ea3i ch\u1edf th\u00eam $16$ t\u1ea5n h\u00e0ng n\u00ean ta c\u00f3 ph\u01b0\u01a1ng tr\u00ecnh: <br\/>$\\dfrac {120}{x-2}-\\dfrac {120}{x}=16\\\\ \\Leftrightarrow 120(x-2)-120x=16x(x-2)\\\\ \\Leftrightarrow 16x^2-32x-240=0\\\\ \\Leftrightarrow x^2-2x-15=0\\\\ \\Leftrightarrow(x+3)(x-5)=0 \\\\ \\Leftrightarrow \\left[\\begin{aligned}&x=-3\\,\\,\\text{(lo\u1ea1i)}\\\\&x=5\\,\\,\\text{(th\u1ecfa m\u00e3n)}\\end{aligned}\\right.$<br\/>V\u1eady \u0111\u1ed9i xe c\u00f3 $5$ xe.<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $5$<\/span><\/span>"}]}],"id_ques":989},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["40"]]],"list":[{"point":10,"width":50,"type_input":"","ques":"<span class='basic_left'>M\u1ed9t m\u00e1y bay tr\u1ef1c th\u0103ng bay t\u1eeb $A$ \u0111\u1ebfn $B$ c\u00e1ch nhau $960 km$ v\u1edbi v\u1eadn t\u1ed1c $280 km\/h$. Khi bay t\u1eeb $A$ \u0111\u1ebfn $B$ do b\u1ecb gi\u00f3 c\u1ea3n n\u00ean th\u1eddi gian bay ph\u1ea3i nhi\u1ec1u h\u01a1n $1$ gi\u1edd so v\u1edbi th\u1eddi gian bay t\u1eeb $B$ \u0111\u1ebfn $A$ (do \u0111\u01b0\u1ee3c gi\u00f3 \u0111\u1ea9y). T\u00ednh v\u1eadn t\u1ed1c c\u1ee7a gi\u00f3.<br\/><b> \u0110\u00e1p s\u1ed1: <\/b> _input_ ($km\/h$)<\/span>","hint":"T\u01b0\u01a1ng t\u1ef1 b\u00e0i to\u00e1n thuy\u1ec1n \u0111i xu\u00f4i d\u00f2ng v\u00e0 ng\u01b0\u1ee3c d\u00f2ng.<br\/>Khi \u0111i t\u1eeb $A$ \u0111\u1ebfn $B$: V\u1eadn t\u1ed1c ng\u01b0\u1ee3c chi\u1ec1u $=$ v\u1eadn t\u1ed1c m\u00e1y bay $-$ v\u1eadn t\u1ed1c gi\u00f3.<br\/>Khi \u0111i t\u1eeb $B$ \u0111\u1ebfn $A$: v\u1eadn t\u1ed1c xu\u00f4i chi\u1ec1u $=$ v\u1eadn t\u1ed1c m\u00e1y bay $+$ v\u1eadn t\u1ed1c gi\u00f3.","explain":"<span class='basic_left'><span class='basic_green'>L\u1eadp b\u1ea3ng:<\/span><br\/><table><tr><th><\/th><th>Qu\u00e3ng \u0111\u01b0\u1eddng $AB$ ($km$)<\/th><th>V\u1eadn t\u1ed1c bay ($km\/h$)<\/th><th>Th\u1eddi gian (gi\u1edd)<\/th><\/tr><tr><td>Bay t\u1eeb $A$ \u0111\u1ebfn $B$<\/td><td>$960$<\/td><td>$280-x$<\/td><td>$\\dfrac {960}{280-x}$<\/td><\/tr><tr><td>Bay t\u1eeb $B$ \u0111\u1ebfn $A$<\/td><td>$960$<\/td><td>$280+x$<\/td><td>$\\dfrac {960}{280+x}$<\/td><\/tr><\/table><br\/><span class='basic_green'>B\u00e0i gi\u1ea3i<\/span><br\/>G\u1ecdi v\u1eadn t\u1ed1c gi\u00f3 l\u00e0 $x$ ($km,\\, x > 0$)<br\/>V\u1eadn t\u1ed1c c\u1ee7a m\u00e1y bay khi bay t\u1eeb $A$ \u0111\u1ebfn $B$ l\u00e0 $280-x$ ($km\/h$)<br\/>Th\u1eddi gian m\u00e1y bay bay t\u1eeb $A$ \u0111\u1ebfn $B$ l\u00e0 $\\dfrac {960}{280-x}$ (gi\u1edd)<br\/>V\u1eadn t\u1ed1c m\u00e1y bay bay t\u1eeb $B$ \u0111\u1ebfn $A$ l\u00e0 $280+x$($km\/h$)<br\/>Th\u1eddi gian m\u00e1y bay bay t\u1eeb $B$ \u0111\u1ebfn $A$ l\u00e0 $\\dfrac {960}{280+x}$ (gi\u1edd)<br\/>V\u00ec th\u1eddi gian m\u00e1y bay bay t\u1eeb $A$ \u0111\u1ebfn $B$ nhi\u1ec1u h\u01a1n $1$ gi\u1edd n\u00ean ta c\u00f3 ph\u01b0\u01a1ng tr\u00ecnh: <br\/>$\\dfrac {960}{280-x}-\\dfrac {960}{280+x}=1\\\\ \\Leftrightarrow 960(280+x)-960(280-x)=(280-x)(280+x)\\\\ \\Leftrightarrow x^2+1920x-78400=0\\\\ \\Leftrightarrow x^2-40x+1960x-78400=0\\\\ \\Leftrightarrow x(x-40)+1960(x-40)=0\\\\ \\Leftrightarrow (x-40)(x+1960)=0\\\\ \\Leftrightarrow\\left[\\begin{aligned} &x=40\\,\\,\\text {(th\u1ecfa m\u00e3n)}\\\\ &x=-1960\\,\\,\\text{(lo\u1ea1i)}\\\\ \\end{aligned} \\right. $<br\/>V\u1eady v\u1eadn t\u1ed1c c\u1ee7a gi\u00f3 l\u00e0 $40 km\/h$.<br\/><span class='basic_pink'>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o ch\u1ed7 tr\u1ed1ng l\u00e0 $40$<\/span><\/span>"}]}],"id_ques":990}],"lesson":{"save":0,"level":3}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý