đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0110\u00fang ho\u1eb7c Sai","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" T\u1ec9 s\u1ed1 c\u1ee7a hai \u0111o\u1ea1n th\u1eb3ng l\u00e0 t\u1ec9 s\u1ed1 \u0111\u1ed9 d\u00e0i c\u1ee7a ch\u00fang theo c\u00f9ng m\u1ed9t \u0111\u01a1n v\u1ecb. <b>\u0110\u00fang<\/b> hay <b>Sai<\/b>? ","select":[" A. \u0110\u00fang"," B. Sai"],"explain":" \u0110\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>A. \u0110\u00fang<\/span>","column":2}]}],"id_ques":1651},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["="]]],"list":[{"point":5,"width":50,"content":"","type_input":"","ques":"<span class='basic_left'>Cho $\\triangle ABC$. Tr\u00ean c\u1ea1nh $AB$, $AC$ l\u1ea7n l\u01b0\u1ee3t l\u1ea5y \u0111i\u1ec3m $D$ v\u00e0 $E$ sao cho $DE \/\/ BC$. Qua $C$ k\u1ebb \u0111\u01b0\u1eddng th\u1eb3ng song song v\u1edbi $EB$, c\u1eaft $AB$ \u1edf $F$. So s\u00e1nh $AB^2$ v\u00e0 $AD.AF$ <br\/> <b>\u0110\u00e1p \u00e1n:<\/b> $AB^2$ _input_ $AD.AF$<\/span>","hint":"S\u1eed d\u1ee5ng h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00ed Ta-l\u00e9t \u1ee9ng v\u1edbi $\\triangle ABC$ v\u00e0 $\\triangle AFC$","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai14/lv1/img\/H8C3B1_D115.png' \/><\/center> <br\/> X\u00e9t $\\triangle ABC$ c\u00f3: <br\/> $DE \/\/ BC$ (gi\u1ea3 thi\u1ebft) <br\/> $\\Rightarrow \\dfrac{AD}{AB} = \\dfrac{AE}{AC}$ (\u0111\u1ecbnh l\u00fd Ta-l\u00e9t) <b>(1)<\/b> <br\/> X\u00e9t $\\triangle AFC$ c\u00f3: <br\/> $EB \/\/ CF$ (gi\u1ea3 thi\u1ebft) <br\/> $\\Rightarrow \\dfrac{AB}{AF} = \\dfrac{AE}{AC}$ (\u0111\u1ecbnh l\u00fd Ta-l\u00e9t) <b>(2)<\/b> <br\/> T\u1eeb (1) v\u00e0 (2) $\\Rightarrow \\dfrac{AD}{AB} = \\dfrac{AB}{AF}$ <br\/> $\\Rightarrow AB.AB = AD.AF$ hay $AB^2 = AD.AF$ <br\/> V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 <span class='basic_pink'> \"=\"<\/span><\/span>"}]}],"id_ques":1652},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":" T\u00ecm \u0111\u1ed9 d\u00e0i $x$ trong h\u00ecnh sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai14/lv1/img\/H8C3_B101.png' \/><\/center> ","select":[" A. $5cm$ "," B. $2,25cm$","C. $16cm$","D. $4cm$"],"explain":" <span class='basic_left'><span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span> <br\/> S\u1eed d\u1ee5ng \u0111\u1ecbnh l\u00fd Ta-l\u00e9t<\/span> <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span> <br\/> V\u00ec $EH \/\/ BC$, theo \u0111\u1ecbnh l\u00ed Ta-l\u00e9t ta c\u00f3: <br\/> $\\dfrac{AE}{EB}=\\dfrac{AH}{HC}$ hay $\\dfrac{6}{3}=\\dfrac{8}{x}$ <br\/> $\\Rightarrow x =\\dfrac{3.8}{6}=4 \\text{cm}$ <br\/> V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>D. $4cm$<\/span><\/span> <br\/> <br\/> <\/span>","column":2}]}],"id_ques":1653},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":" T\u00ecm \u0111\u1ed9 d\u00e0i c\u1ea1nh $BC$ trong h\u00ecnh sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai14/lv1/img\/H8C3_B102.png' \/><\/center> ","select":[" A. $5$ "," B. $8$","C. $12,8$","D. $20$"],"explain":" <span class='basic_left'><span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span> <br\/> S\u1eed d\u1ee5ng \u0111\u1ecbnh l\u00fd Ta-l\u00e9t<\/span> <br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span> <br\/> Ta c\u00f3: <br\/> $MN \\bot AB$ (gt) <br\/> $AC \\bot AB$ (gt) <br\/> $\\Rightarrow MN \/\/ AC$ (\u0111\u1ecbnh l\u00fd t\u1eeb vu\u00f4ng g\u00f3c \u0111\u1ebfn song song) <br\/> V\u00ec $MN \/\/ AC$, theo \u0111\u1ecbnh l\u00fd Ta-l\u00e9t ta c\u00f3: <br\/> $\\dfrac{BM}{BA}=\\dfrac{BN}{BC}$ hay $\\dfrac{5}{5+3}=\\dfrac{8}{BC}$ <br\/> $\\Rightarrow BC=\\dfrac{8.(5+3)}{5}=\\dfrac{64}{5}=12,8$ <br\/> V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>C. $12,8$<\/span><\/span> <br\/> <br\/> <\/span>","column":2}]}],"id_ques":1654},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":" T\u1ec9 s\u1ed1 c\u1ee7a hai \u0111o\u1ea1n th\u1eb3ng ph\u1ee5 thu\u1ed9c v\u00e0o c\u00e1ch ch\u1ecdn \u0111\u01a1n v\u1ecb \u0111o. <b>\u0110\u00fang<\/b> hay <b>sai<\/b>? ","select":[" A. \u0110\u00fang "," B. Sai"],"explain":" <span class='basic_left'>Theo ch\u00fa \u00fd t\u1ec9 s\u1ed1 c\u1ee7a hai \u0111o\u1ea1n th\u1eb3ng ta c\u00f3: <br\/> T\u1ec9 s\u1ed1 c\u1ee7a hai \u0111o\u1ea1n th\u1eb3ng <b>kh\u00f4ng<\/b> ph\u1ee5 thu\u1ed9c v\u00e0o c\u00e1ch ch\u1ecdn \u0111\u01a1n v\u1ecb \u0111o <br\/> V\u1eady ta ch\u1ecdn \u0111\u00e1p \u00e1n: <span class='basic_pink'>B. Sai<\/span>","column":2}]}],"id_ques":1655},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" Vi\u1ebft t\u1ec9 s\u1ed1 c\u1ee7a c\u1eb7p \u0111o\u1ea1n th\u1eb3ng sau: $AB = 120cm$; $CD = 80cm$ ","select":[" A. $ \\dfrac{AB}{CD}=\\dfrac{120}{80}=\\dfrac{3}{2}$ "," B. $\\dfrac{AB}{CD}=\\dfrac{80}{120}=\\dfrac{2}{3}$"],"explain":" <span class='basic_left'>T\u1ec9 s\u1ed1 c\u1ee7a hai \u0111o\u1ea1n th\u1eb3ng $AB$ v\u00e0 $CD$ l\u00e0: <br\/> $\\dfrac{AB}{CD}=\\dfrac{120}{80}=\\dfrac{3}{2}$ <br\/> V\u1eady ta ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> A. $ \\dfrac{AB}{CD}=\\dfrac{120}{80}=\\dfrac{3}{2}$<\/span><\/span>","column":2}]}],"id_ques":1656},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":" Vi\u1ebft t\u1ec9 s\u1ed1 c\u1ee7a c\u1eb7p \u0111o\u1ea1n th\u1eb3ng sau: $MN = 18,5cm$; $PQ = 12cm$ ","select":[" A. $ \\dfrac{MN}{PQ}=\\dfrac{12}{18,5}=\\dfrac{24}{37}$ "," B. $\\dfrac{MN}{PQ}=\\dfrac{18,5}{12}=\\dfrac{37}{24}$"],"explain":" <span class='basic_left'>T\u1ec9 s\u1ed1 c\u1ee7a hai \u0111o\u1ea1n th\u1eb3ng $MN$ v\u00e0 $PQ$ l\u00e0: <br\/> $\\dfrac{MN}{PQ}=\\dfrac{18,5}{12}=\\dfrac{37}{24}$ <br\/> V\u1eady ta ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'> B. $\\dfrac{MN}{PQ}=\\dfrac{18,5}{12}=\\dfrac{37}{24}$<\/span><\/span>","column":2}]}],"id_ques":1657},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":" Hai \u0111o\u1ea1n th\u1eb3ng $AB = 15cm$, $CD = 85cm$ t\u1ec9 l\u1ec7 v\u1edbi hai \u0111o\u1ea1n th\u1eb3ng $A\u2019B\u2019 = 24cm$ v\u00e0 $C\u2019D\u2019$. \u0110o\u1ea1n th\u1eb3ng $C\u2019D\u2019$ c\u00f3 \u0111\u1ed9 d\u00e0i (theo \u0111\u01a1n v\u1ecb $cm$) l\u00e0: ","select":[" A. $84$ "," B. $53,125$","C. $136$","D. $163$"],"explain":" <span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span> <br\/> S\u1eed d\u1ee5ng \u0111\u1ecbnh ngh\u0129a \u0111o\u1ea1n th\u1eb3ng t\u1ec9 l\u1ec7<\/span> <br\/> <span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span> <br\/> Hai \u0111o\u1ea1n th\u1eb3ng $AB$, $CD$ t\u1ec9 l\u1ec7 v\u1edbi hai \u0111o\u1ea1n th\u1eb3ng $A\u2019B\u2019$ v\u00e0 $C\u2019D\u2019$ (gi\u1ea3 thi\u1ebft) <br\/> $\\Rightarrow \\dfrac{AB}{CD}=\\dfrac{A'B'}{C'D'}$ hay $\\dfrac{15}{85}=\\dfrac{24}{C'D'}$ <br\/> $\\Rightarrow C'D'=\\dfrac{85.24}{15}=136 \\text{(cm)}$ <br\/> V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>C. $136$<\/span>","column":2}]}],"id_ques":1658},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["10"]]],"list":[{"point":5,"width":50,"content":"","type_input":"","ques":"Cho bi\u1ebft $\\dfrac{AB}{CD}=\\dfrac{2}{5} $ v\u00e0 $CD = 25cm$. T\u00ednh \u0111\u1ed9 d\u00e0i c\u1ea1nh $AB$ <br\/> \u0110\u00e1p \u00e1n: $AB = $_input_ ($cm$)","hint":"","explain":"<span class='basic_left'>Ta c\u00f3: <br\/> $\\dfrac{AB}{CD}=\\dfrac{2}{5}$ (gi\u1ea3 thi\u1ebft) <br\/> $\\Rightarrow AB=\\dfrac{2.CD}{5}=\\dfrac{2.25}{5}=10 \\text{(cm)}$ <br\/> V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 <span class='basic_pink'>10<\/span><\/span>"}]}],"id_ques":1659},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["24"]]],"list":[{"point":5,"width":50,"content":"","type_input":"","ques":"Cho bi\u1ebft $\\dfrac{MN}{PQ}=\\dfrac{5}{6} $ v\u00e0 $MN = 20cm$. T\u00ednh \u0111\u1ed9 d\u00e0i c\u1ea1nh $PQ$ <br\/> \u0110\u00e1p \u00e1n: $PQ =$ _input_ ($cm$)","hint":"","explain":"<span class='basic_left'>Ta c\u00f3: <br\/> $\\dfrac{MN}{PQ}=\\dfrac{5}{6} $ (gi\u1ea3 thi\u1ebft) <br\/> $\\Rightarrow PQ=\\dfrac{MN.6}{5}=\\dfrac{20.6}{5}= 24 \\text{(cm)}$ <br\/> V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 <span class='basic_pink'>24<\/span><\/span>"}]}],"id_ques":1660},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":5,"ques":" Cho bi\u1ebft \u0111\u1ed9 d\u00e0i c\u1ee7a $AB$ g\u1ea5p $4$ l\u1ea7n \u0111\u1ed9 d\u00e0i c\u1ea1nh $CD$ v\u00e0 \u0111\u1ed9 d\u00e0i c\u1ee7a $A\u2019B\u2019$ g\u1ea5p $5$ l\u1ea7n \u0111\u1ed9 d\u00e0i c\u1ee7a $CD$. T\u00ednh t\u1ec9 s\u1ed1 c\u1ee7a hai \u0111o\u1ea1n th\u1eb3ng $AB$ v\u00e0 $A\u2019B\u2019$. ","select":[" A. $\\dfrac{5}{4}$ "," B. $\\dfrac{4}{5}$","C. $\\dfrac{7}{8}$","D. $\\dfrac{5}{7}$"],"explain":" <span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span> <br\/> S\u1eed d\u1ee5ng \u0111\u1ecbnh ngh\u0129a t\u1ec9 s\u1ed1 c\u1ee7a hai \u0111o\u1ea1n th\u1eb3ng<\/span> <br\/> <span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span> <br\/> Theo \u0111\u1ec1 b\u00e0i ta c\u00f3: <br\/> $AB = 4.CD$ <br\/> $A\u2019B\u2019 = 5.CD$ <br\/> T\u1ec9 s\u1ed1 c\u1ee7a hai \u0111o\u1ea1n th\u1eb3ng $AB$ v\u00e0 $A\u2019B\u2019$ l\u00e0: <br\/> $\\dfrac{AB}{A'B'}=\\dfrac{4.CD}{5.CD}=\\dfrac{4}{5}$ <br\/> V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>B. <\/span>","column":2}]}],"id_ques":1661},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":" Cho bi\u1ebft \u0111\u1ed9 d\u00e0i c\u1ee7a $MN$ g\u1ea5p $7$ l\u1ea7n \u0111\u1ed9 d\u00e0i c\u1ea1nh $AB$ v\u00e0 \u0111\u1ed9 d\u00e0i c\u1ee7a $PQ$ g\u1ea5p $12$ l\u1ea7n \u0111\u1ed9 d\u00e0i c\u1ee7a $AB$. T\u00ednh t\u1ec9 s\u1ed1 c\u1ee7a hai \u0111o\u1ea1n th\u1eb3ng $MN$ v\u00e0 $PQ$ ","select":[" A. $\\dfrac{5}{7}$ "," B. $\\dfrac{12}{7}$","C. $\\dfrac{7}{12}$","D. $\\dfrac{19}{12}$"],"explain":" <span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span> <br\/> S\u1eed d\u1ee5ng \u0111\u1ecbnh ngh\u0129a t\u1ec9 s\u1ed1 c\u1ee7a hai \u0111o\u1ea1n th\u1eb3ng<\/span> <br\/> <span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span> <br\/> Theo \u0111\u1ec1 b\u00e0i ta c\u00f3: <br\/> $MN = 7.AB$ <br\/> $PQ = 12.AB$ <br\/> T\u1ec9 s\u1ed1 c\u1ee7a hai \u0111o\u1ea1n th\u1eb3ng $MN$ v\u00e0 $PQ$ l\u00e0: <br\/> $\\dfrac{MN}{PQ}=\\dfrac{7.AB}{12.AB}=\\dfrac{7}{12}$ <br\/> V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>C. $\\dfrac{7}{12}$<\/span>","column":2}]}],"id_ques":1662},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":" Cho c\u00e1c \u0111o\u1ea1n th\u1eb3ng $AB = 8cm$; $CD = 6cm$; $MN = 12cm$; $PQ = x$. T\u00ecm gi\u00e1 tr\u1ecb c\u1ee7a $x$ \u0111\u1ec3 $AB$ v\u00e0 $CD$ t\u1ec9 l\u1ec7 v\u1edbi $MN$ v\u00e0 $PQ$.","select":[" A. $4cm$ "," B. $5cm$","C. $16cm$","D. $9cm$"],"hint":"","explain":" <span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span> <br\/> S\u1eed d\u1ee5ng \u0111\u1ecbnh ngh\u0129a \u0111o\u1ea1n th\u1eb3ng t\u1ec9 l\u1ec7<\/span> <br\/> <span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span> <br\/> \u0110\u1ec3 $AB$ v\u00e0 $CD$ t\u1ec9 l\u1ec7 v\u1edbi $MN$ v\u00e0 $PQ$ <br\/> $\\Leftrightarrow \\dfrac{AB}{CD}=\\dfrac{MN}{PQ}$ (\u0111\u1ecbnh ngh\u0129a \u0111o\u1ea1n th\u1eb3ng t\u1ec9 l\u1ec7) <br\/> $\\Leftrightarrow \\dfrac{8}{6}=\\dfrac{12}{x}$ <br\/> $\\Leftrightarrow x=\\dfrac{12.6}{8} = 9 \\text{(cm)} $ <br\/> V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>D. $9\\,cm$<\/span>","column":2}]}],"id_ques":1663},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[3]],"list":[{"point":5,"ques":" Cho c\u00e1c \u0111o\u1ea1n th\u1eb3ng $AB = x\\,cm$; $CD = 9cm$; $MN = 7cm$; $PQ = 12cm$. T\u00ecm gi\u00e1 tr\u1ecb c\u1ee7a $x$ \u0111\u1ec3 $AB$ v\u00e0 $CD$ t\u1ec9 l\u1ec7 v\u1edbi $MN$ v\u00e0 $PQ$.","select":[" A. $4,75cm$ "," B. $15,5cm$","C. $5,25cm$","D. $9,3cm$"],"explain":" <span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span> <br\/> S\u1eed d\u1ee5ng \u0111\u1ecbnh ngh\u0129a \u0111o\u1ea1n th\u1eb3ng t\u1ec9 l\u1ec7<\/span> <br\/> <span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span> <br\/> \u0110\u1ec3 $AB$ v\u00e0 $CD$ t\u1ec9 l\u1ec7 v\u1edbi $MN$ v\u00e0 $PQ$ <br\/> $\\Leftrightarrow \\dfrac{AB}{CD}=\\dfrac{MN}{PQ}$ (\u0111\u1ecbnh ngh\u0129a \u0111o\u1ea1n th\u1eb3ng t\u1ec9 l\u1ec7) <br\/> $\\Leftrightarrow \\dfrac{x}{9}=\\dfrac{7}{12}$ <br\/> $\\Leftrightarrow x=\\dfrac{9.7}{12} = 5,25 \\text{(cm)} $ <br\/> V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>C. $5,25cm$<\/span>","column":2}]}],"id_ques":1664},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" Cho $\\triangle ABC$, tr\u00ean c\u1ea1nh $AC$ l\u1ea5y \u0111i\u1ec3m $D$ sao cho $AD = 2,4cm$, $DC = 1,6cm$. Qua $D$ k\u1ebb $DE \/\/ AB$ ($E \\in BC$). Bi\u1ebft $CB = 7cm$. T\u00ednh \u0111\u1ed9 d\u00e0i c\u1ee7a $CE$.","select":[" A. $2,8cm$ "," B. $10,5cm$","C. $4,7cm$","D. $5,6cm$"],"hint":" T\u00ednh \u0111\u1ed9 d\u00e0i c\u1ea1nh AC sau \u0111\u00f3 s\u1eed d\u1ee5ng \u0111\u1ecbnh l\u00fd Ta-l\u00e9t \u0111\u1ec3 t\u00ecm $CE$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span> <br\/> <b>B\u01b0\u1edbc 1:<\/b> T\u00ednh $AC$ <br\/> <b>B\u01b0\u1edbc 2: <\/b>\u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00ed Ta-l\u00e9t \u0111\u1ec3 \u0111\u01b0a ra h\u1ec7 th\u1ee9c: $\\dfrac{CD}{CA} = \\dfrac{CE}{CB}$ <br\/> <b>B\u01b0\u1edbc 3:<\/b> T\u1eeb h\u1ec7 th\u1ee9c \u1edf b\u01b0\u1edbc 2 t\u00ednh $CE$. <br\/> <span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span> <br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai14/lv1/img\/H8C3B1_D104.png' \/><\/center> <br\/> Ta c\u00f3: $D \\in AC$ (gi\u1ea3 thi\u1ebft) <br\/> $\\Rightarrow AC = AD + DC = 2,4 + 1,6 = 4 \\text{(cm)}$ <br\/> V\u00ec $DE \/\/ AB$ (gi\u1ea3 thi\u1ebft), theo \u0111\u1ecbnh l\u00ed Ta-l\u00e9t ta c\u00f3: <br\/> $\\dfrac{CD}{CA} = \\dfrac{CE}{CB}$ hay $\\dfrac{1,6}{4} = \\dfrac{CE}{7}$ <br\/> $\\Rightarrow CE = \\dfrac{1,6.7}{4} = 2,8 \\text{(cm)}$ <br\/> V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>A. $2,8cm$<\/span>","column":2}]}],"id_ques":1665},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":" Cho tam gi\u00e1c $\\triangle MNP$, $E \\in MN$ v\u00e0 $F \\in MP$. Bi\u1ebft $ME = 3cm$; $EN = 4,5cm$; $MF = 6cm$ v\u00e0 $EF \/\/ NP$. T\u00ednh $FP$.","select":[" A. $2,25cm$ "," B. $4cm$","C. $4,5cm$","D. $9cm$"],"hint":" S\u1eed d\u1ee5ng \u0111\u1ecbnh l\u00fd Ta-l\u00e9t","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span> <br\/> <b>B\u01b0\u1edbc 1:<\/b>\u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00ed Ta-l\u00e9t \u0111\u1ec3 \u0111\u01b0a ra h\u1ec7 th\u1ee9c: $\\dfrac{ME}{EN} = \\dfrac{MF}{FP}$ <br\/> <b>B\u01b0\u1edbc 2:<\/b> T\u1eeb h\u1ec7 th\u1ee9c \u1edf b\u01b0\u1edbc 1 t\u00ednh $FP$. <br\/> <span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span> <br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai14/lv1/img\/H8C3B1_D105.png' \/><\/center> <br\/> V\u00ec $EF \/\/ NP$ (gi\u1ea3 thi\u1ebft), theo \u0111\u1ecbnh l\u00ed Ta-l\u00e9t ta c\u00f3: <br\/> $\\dfrac{ME}{EN} = \\dfrac{MF}{FP}$ hay $\\dfrac{3}{4,5} = \\dfrac{6}{FP}$ <br\/> $\\Rightarrow FP = \\dfrac{4,5 . 6}{3} = 9 \\text{(cm)}$ <br\/> V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: <span class='basic_pink'>D. $9cm$<\/span>","column":2}]}],"id_ques":1666},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00fang hay sai","title_trans":"","temp":"true_false","correct":[["t","f","t"]],"list":[{"point":5,"image":"","col_name":["C\u00e2u h\u1ecfi:","\u0110\u00fang","Sai"],"arr_ques":[" T\u1ec9 s\u1ed1 c\u1ee7a c\u00e1c c\u1eb7p \u0111o\u1ea1n th\u1eb3ng $AB = 5cm$ v\u00e0 $CD = 7cm$ l\u00e0: $\\dfrac{AB}{CD} = \\dfrac{5}{7}$ "," T\u1ec9 s\u1ed1 c\u1ee7a c\u00e1c c\u1eb7p \u0111o\u1ea1n th\u1eb3ng $MN = 4,5cm$ v\u00e0 $PQ = 6cm$ l\u00e0: $\\dfrac{MN}{PQ} = \\dfrac{6}{4,5} = \\dfrac{4}{3}$ "," T\u1ec9 s\u1ed1 c\u1ee7a c\u00e1c c\u1eb7p \u0111o\u1ea1n th\u1eb3ng $OA = 3cm$ v\u00e0 $OB = 6cm$ l\u00e0: $\\dfrac{OA}{OB} = \\dfrac{1}{2} $ "],"hint":"","explain":["T\u1ec9 s\u1ed1 c\u1ee7a c\u00e1c c\u1eb7p \u0111o\u1ea1n th\u1eb3ng $AB = 5cm$ v\u00e0 $CD = 7cm$ l\u00e0: $\\dfrac{AB}{CD} = \\dfrac{5}{7}$ (\u0110\u00daNG)"," <br\/> T\u1ec9 s\u1ed1 c\u1ee7a c\u00e1c c\u1eb7p \u0111o\u1ea1n th\u1eb3ng $MN = 4,5cm$ v\u00e0 $PQ = 6cm$ l\u00e0: $\\dfrac{MN}{PQ} = \\dfrac{6}{4,5} = \\dfrac{4}{3}$ (SAI). V\u00ec T\u1ec9 s\u1ed1 c\u1ee7a c\u00e1c c\u1eb7p \u0111o\u1ea1n th\u1eb3ng $MN = 4,5cm$ v\u00e0 $PQ = 6cm$ l\u00e0: $\\dfrac{MN}{PQ} = \\dfrac{4,5}{6} = \\dfrac{3}{4}$ "," <br\/> T\u1ec9 s\u1ed1 c\u1ee7a c\u00e1c c\u1eb7p \u0111o\u1ea1n th\u1eb3ng $OA = 3cm$ v\u00e0 $OB = 6cm$ l\u00e0: $\\dfrac{OA}{OB} = \\dfrac{1}{2} $ (\u0110\u00daNG). V\u00ec T\u1ec9 s\u1ed1 c\u1ee7a c\u00e1c c\u1eb7p \u0111o\u1ea1n th\u1eb3ng $OA = 3cm$ v\u00e0 $OB = 6cm$ l\u00e0: $\\dfrac{OA}{OB} = \\dfrac{3}{6} = \\dfrac{1}{2} $ "]}]}],"id_ques":1667},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":" Cho h\u00ecnh v\u1ebd sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai14/lv1/img\/H8C3B1_D106.png' \/><\/center> <br\/> H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","select":[" A. $\\dfrac{EM}{MF} = \\dfrac{EN}{NP}$ "," B. $\\dfrac{EM}{EF} = \\dfrac{EN}{EP}$","C. $\\dfrac{MF}{EF} = \\dfrac{NP}{EP}$","D. C\u1ea3 A, B, C \u0111\u1ec1u \u0111\u00fang"],"hint":" S\u1eed d\u1ee5ng \u0111\u1ecbnh l\u00fd Ta-l\u00e9t","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai14/lv1/img\/H8C3B1_D106.png' \/><\/center> <br\/> V\u00ec $MN \/\/ FP$ (gi\u1ea3 thi\u1ebft), theo \u0111\u1ecbnh l\u00ed Ta-l\u00e9t ta c\u00f3: <br\/> $\\dfrac{EM}{MF} = \\dfrac{EN}{NP}$; $\\dfrac{EM}{EF} = \\dfrac{EN}{EP}$; $\\dfrac{MF}{EF} = \\dfrac{NP}{EP}$ <br\/> V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>D. C\u1ea3 A, B, C \u0111\u1ec1u \u0111\u00fang<\/span><\/span>","column":2}]}],"id_ques":1668},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":5,"ques":" Cho h\u00ecnh v\u1ebd sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai14/lv1/img\/H8C3B1_D107.png' \/><\/center> <br\/> H\u00e3y ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang","select":[" A. $MN \/\/ BC$ "," B. $NP \/\/ AB$","C. $MP \/\/ AC$","D. C\u1ea3 A, C \u0111\u1ec1u \u0111\u00fang"],"hint":" S\u1eed d\u1ee5ng \u0111\u1ecbnh l\u00fd Ta-l\u00e9t \u0111\u1ea3o","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai14/lv1/img\/H8C3B1_D107.png' \/><\/center> <br\/> Ta c\u00f3: <br\/> $\\left.\\begin{array}{l} \\dfrac{AM}{MB} = \\dfrac{6}{2} = 3\\\\ \\dfrac{AN}{NC} = \\dfrac{4,5}{1,5} = 3 \\end{array} \\right\\}$ $\\Rightarrow \\dfrac{AM}{MB} = \\dfrac{AN}{NC}$ <br\/> $\\Rightarrow MN \/\/ BC$ (\u0111\u1ecbnh l\u00ed Ta-l\u00e9t \u0111\u1ea3o) <b>(\u0111\u00e1p \u00e1n A \u0111\u00fang)<\/b> <br\/> $\\left.\\begin{array}{l} \\dfrac{BM}{MA} = \\dfrac{2}{6} = \\dfrac{1}{3}\\\\ \\dfrac{BP}{PC} = \\dfrac{2,25}{6,75} = \\dfrac{1}{3} \\end{array} \\right\\}$ $\\Rightarrow \\dfrac{BM}{MA} = \\dfrac{BP}{PC}$ <br\/> $\\Rightarrow MP \/\/ AC$ (\u0111\u1ecbnh l\u00ed Ta-l\u00e9t \u0111\u1ea3o) <b>(\u0111\u00e1p \u00e1n C \u0111\u00fang)<\/b> <br\/> $\\left.\\begin{array}{l} \\dfrac{CP}{PB} = \\dfrac{6.75}{2,25} = 3\\\\ \\dfrac{CN}{NA} = \\dfrac{1,5}{4,5} = \\dfrac{1}{3} \\end{array} \\right\\}$ $\\Rightarrow \\dfrac{CP}{PB} \\neq \\dfrac{CN}{NA}$ <br\/> $\\Rightarrow$ NP v\u00e0 AB kh\u00f4ng song song v\u1edbi nhau <b>(\u0111\u00e1p \u00e1n B sai)<\/b> <br\/> V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>D. C\u1ea3 A, C \u0111\u1ec1u \u0111\u00fang<\/span><\/span>","column":2}]}],"id_ques":1669},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":5,"ques":" Cho h\u00ecnh v\u1ebd sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai14/lv1/img\/H8C3B1_D108.png' \/><\/center> <br\/> Bi\u1ebft $\\dfrac{ME}{MN} = \\dfrac{2}{5}$. T\u00ednh $NP$.","select":[" A. $NP = 12cm$ "," B. $NP = 15cm$","C. $NP = 28cm$","D. $NP = 24cm$"],"hint":" S\u1eed d\u1ee5ng h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00fd Ta-l\u00e9t","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai14/lv1/img\/H8C3B1_D108.png' \/><\/center> <br\/> $\\triangle MNP$ c\u00f3: <br\/> $\\left.\\begin{array}{l} EF \/\/ NP \\text{(gi\u1ea3 thi\u1ebft)}\\\\ E \\in MN; F \\in MP \\text{(gi\u1ea3 thi\u1ebft)} \\end{array} \\right\\}$ <br\/> $\\Rightarrow \\dfrac{ME}{MN} = \\dfrac{EF}{NP}$ (h\u1ec7 qu\u1ea3 c\u1ee7a \u0111\u1ecbnh l\u00ed Ta-l\u00e9t) <br\/> $\\Rightarrow \\dfrac{2}{5} = \\dfrac{4,8}{NP}$ <br\/> $\\Rightarrow NP = \\dfrac{5.4,8}{2} = 12 \\text{(cm)}$ <br\/> <br\/> V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>A. $NP = 12cm$<\/span><\/span>","column":2}]}],"id_ques":1670}],"lesson":{"save":0,"level":1}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý