đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":10,"ques":" <span class='basic_left'> Cho $\\triangle{ABC}$ v\u00e0 c\u00e1c \u0111\u01b0\u1eddng cao $BD$, $CE$. T\u00ednh $\\widehat{AED}$ bi\u1ebft $\\widehat{ACB} = 60^o$.<br\/><\/span>","select":[" A. $\\widehat{AED} = 30^o$"," B. $\\widehat{AED} = 60^o$","C. $\\widehat{AED} = 120^o$","D. $\\widehat{AED} = 150^o$"],"hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> Ch\u1ee9ng minh $\\triangle$ vu\u00f4ng $ABD$ $\\backsim$ $\\triangle$ vu\u00f4ng $ACE$<br\/><b>B\u01b0\u1edbc 2:<\/b> Ch\u1ee9ng minh $\\triangle{ADE}$ $\\backsim$ $\\triangle{ABC}$<\/span><br\/> <span class='basic_left'><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai17/lv3/img\/H8C3B4_K101.png' \/><\/center><br\/> +) $BD$, $CE$ l\u1ea7n l\u01b0\u1ee3t l\u00e0 \u0111\u01b0\u1eddng cao c\u1ee7a $\\triangle{ABC}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\widehat{AEC} = \\widehat{ADB} = 90^o$ <br\/>+) X\u00e9t$\\triangle$ vu\u00f4ng $ABD$ v\u00e0 $\\triangle$ vu\u00f4ng $ACE$ c\u00f3: <br\/>$\\widehat{AEC} = \\widehat{ADB} = 90^o$ (ch\u1ee9ng minh tr\u00ean)<br\/>$\\widehat{A} $ chung<br\/>$\\Rightarrow$ $\\triangle$ vu\u00f4ng $ABD$ $\\backsim$ $\\triangle$ vu\u00f4ng $ACE$ (g\u00f3c - g\u00f3c)<br\/>$\\Rightarrow \\dfrac{AD}{AE} = \\dfrac{AB}{AC}$ (c\u1eb7p c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng t\u1ec9 l\u1ec7)<br\/>$\\Rightarrow \\dfrac{AD}{AB} = \\dfrac{AE}{AC}$<br\/> +) X\u00e9t $\\triangle{ADE}$ v\u00e0 $\\triangle{ABC}$ c\u00f3: <br\/>$\\widehat{A} $ chung<br\/> $\\dfrac{AD}{AB} = \\dfrac{AE}{AC}$ (ch\u1ee9ng minh tr\u00ean) <br\/>$\\Rightarrow \\triangle{ADE}$ $\\backsim$ $\\triangle{ABC}$ (c\u1ea1nh-g\u00f3c-c\u1ea1nh)<br\/>$\\Rightarrow \\widehat{AED} = \\widehat{ACB}$ (c\u1eb7p g\u00f3c t\u01b0\u01a1ng \u1ee9ng)<br\/> M\u00e0 $\\widehat{ACB} = 60^o$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\widehat{AED} = 60^o$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0<span class='basic_pink'> B. $\\widehat{AED} = 60^o$<\/span> <\/span> <br\/><\/span> ","column":2}]}],"id_ques":1760},{"time":24,"part":[{"title":"Ch\u1ecdn <u>nh\u1eefng<\/u> \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"Ch\u1ecdn \u0111\u01b0\u1ee3c nhi\u1ec1u \u0111\u00e1p \u00e1n","temp":"checkbox","correct":[["1","3","4"]],"list":[{"point":10,"img":"","ques":"<span class='basic_left'>Cho tam gi\u00e1c $ABC$, \u0111\u01b0\u1eddng cao $AH$ ($H$ $\\in$ $BC$). Bi\u1ebft $AH = 6cm$, $BH = 3cm$, $HC = 12cm$<br\/><b>H\u00e3y ch\u1ecdn nh\u1eefng \u0111\u00e1p \u00e1n \u0111\u00fang<\/b><\/span><br\/>","hint":"","column":2,"number_true":2,"select":["A. $\\triangle{ABH} \\backsim \\triangle{CAH} $","B. $\\triangle{ABH} \\backsim \\triangle{ACH} $","C. $\\widehat{HAB} = \\widehat{HCA}$","D. $\\widehat{BAC} = 90^o$"],"explain":"<span class='basic_left'><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai17/lv3/img\/H8C3B4_K102.png' \/><\/center><br\/> X\u00e9t $\\triangle$ vu\u00f4ng $AHB$ v\u00e0 $\\triangle$ vu\u00f4ng $CHA$ c\u00f3:<br\/>$\\widehat{AHB} = \\widehat{AHC}$ (c\u00f9ng $= 90^o$)<br\/> $\\dfrac{HB}{HA} = \\dfrac{HA}{HC}$ (v\u00ec $\\dfrac{3}{6} = \\dfrac{6}{12}$ ) <br\/>$\\Rightarrow$ $\\triangle$ vu\u00f4ng $AHB$ $\\backsim$ $\\triangle$ vu\u00f4ng $CHA$ (c\u1ea1nh-g\u00f3c-c\u1ea1nh) <b>(\u0111\u00e1p \u00e1n A sai, \u0111\u00e1p \u00e1n B \u0111\u00fang)<\/b><br\/>$\\Rightarrow$ $\\widehat{HAB} = \\widehat{HCA}$ (c\u1eb7p g\u00f3c t\u01b0\u01a1ng \u1ee9ng) <b>(\u0111\u00e1p \u00e1n C \u0111\u00fang)<\/b><br\/>L\u1ea1i c\u00f3: $\\widehat{HAC} + \\widehat{HCA} = 90^o$ (hai g\u00f3c ph\u1ee5 nhau trong $\\triangle$ vu\u00f4ng $AHC$)<br\/> $\\Rightarrow$ $\\widehat{HAB} + \\widehat{HAC} = 90^o$ hay $\\widehat{BAC} = 90^o$ <b>(\u0111\u00e1p \u00e1n D \u0111\u00fang)<\/b><br\/> <br\/><br\/>V\u1eady nh\u1eefng \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>A, C, D<\/span><br\/> "}]}],"id_ques":1761},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":10,"ques":" <span class='basic_left'> Tam gi\u00e1c $ABC$ c\u00f3 \u0111\u1ed9 d\u00e0i c\u00e1c c\u1ea1nh l\u00e0 $AB = 3cm$, $AC = 4cm$, $BC = 5cm$. Bi\u1ebft $\\triangle{ABC}$ $\\backsim$ $\\triangle{A'B'C'}$ v\u00e0 $S_{\\triangle{A'B'C'}} = 54 \\text{cm}^2$. T\u00ednh chu vi $\\triangle{A'B'C'}$ <br\/><\/span>","select":[" A. $28cm$"," B. $30cm$","C. $32cm$","D. $35cm$"],"hint":"","explain":"<span class='basic_left'>Ta c\u00f3: $3^2 + 4^2 = 9 + 16 = 25 = 5^2$<br\/> $\\Rightarrow AB^2 + AC^2 = BC^2$<br\/>$\\Rightarrow \\triangle{ABC}$ vu\u00f4ng t\u1ea1i $A$ (\u0111\u1ecbnh l\u00ed Py-ta-go \u0111\u1ea3o)<br\/>$\\Rightarrow \\widehat{BAC} = 90^o$<br\/>L\u1ea1i c\u00f3: $\\triangle{ABC}$ $\\backsim$ $\\triangle{A'B'C'}$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\widehat{BAC} = \\widehat{B'A'C'} = 90^o$ (c\u1eb7p g\u00f3c t\u01b0\u01a1ng \u1ee9ng)<br\/>$\\Rightarrow \\triangle{A'B'C'}$ vu\u00f4ng t\u1ea1i $A'$ <br\/>$\\Rightarrow S_{\\triangle{A'B'C'}} = \\dfrac{A'B'. A'C'}{2}$ (1)<br\/>G\u1ecdi $k$ l\u00e0 h\u1ec7 s\u1ed1 \u0111\u1ed3ng d\u1ea1ng c\u1ee7a $\\triangle{ABC}$ v\u00e0 $\\triangle{A'B'C'}$ ($k > 0$) <br\/>$\\Rightarrow A'B' = 3k; A'C' = 4k; B'C' = 5k$ (2)<br\/>T\u1eeb (1) v\u00e0 (2) $\\Rightarrow S_{\\triangle{A'B'C'}} = \\dfrac{3k.4k}{2} = 6k^2$ <br\/>L\u1ea1i c\u00f3: $S_{\\triangle{A'B'C'}} = 54 \\text{cm}^2$<br\/>$\\Rightarrow 6k^2 = 54 \\Rightarrow k^2 = 9 \\Rightarrow k = 3$ <br\/>$\\Rightarrow A'B' = 3.3 = 9 \\text{(cm)}; A'C' = 4.3 = 12 \\text{(cm)}; B'C' = 5.3 = 15 \\text{(cm)}$ <br\/>Chu vi $\\triangle{A'B'C'}$ l\u00e0: $9 + 12 + 15 = 36$ ($cm$)<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>C. $36cm$<\/span> <\/span> ","column":2}]}],"id_ques":1762},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":10,"ques":" <span class='basic_left'> Cho tam gi\u00e1c nh\u1ecdn $ABC$, \u0111\u01b0\u1eddng cao $AH$. Qua $H$ k\u1ebb $HK$ song song v\u1edbi $AB$ ($K \\in AC$). Bi\u1ebft $S_{\\triangle{AHK}} = \\dfrac{3}{16}S_{\\triangle{ABC}}$, h\u00e3y t\u00ednh t\u1ec9 s\u1ed1 $\\dfrac{AK}{KC}$. <br\/><\/span>","select":[" A. $\\dfrac{AK}{KC} = \\dfrac{2}{3}$ "," B. $\\dfrac{AK}{KC} = \\dfrac{1}{3}$ ","C. $\\dfrac{AK}{KC} = \\dfrac{2}{3}$ ho\u1eb7c $\\dfrac{AK}{KC} = 3 $","D. $\\dfrac{AK}{KC} = \\dfrac{1}{3}$ ho\u1eb7c $\\dfrac{AK}{KC} = 3 $"],"hint":"$ \\dfrac{S_{\\triangle{AHK}}}{S_{\\triangle{ABC}}} = \\dfrac{S_{\\triangle{AHK}}}{S_{\\triangle{CHK}}}.\\dfrac{S_{\\triangle{CHK}}}{S_{\\triangle{ABC}}}$.","explain":"<span class='basic_left'><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai17/lv3/img\/H8C3B4_K103.png' \/><\/center><br\/>K\u1ebb $HI \\perp AC$ ($I \\in AC$)<br\/>\u0110\u1eb7t $AK = x, KC = y$<br\/> $ \\dfrac{S_{\\triangle{AHK}}}{S_{\\triangle{CHK}}} = \\dfrac{\\dfrac{HI.AK}{2}}{\\dfrac{HI.KC}{2}} = \\dfrac{AK}{KC} = \\dfrac{x}{y}$<br\/> $\\triangle{ABC}$ c\u00f3: $HK \/\/ AB$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow$ $\\triangle{CHK}$ $\\backsim$ $\\triangle{CBA}$<br\/>$\\Rightarrow \\dfrac{S_{\\triangle{CHK}}}{S_{\\triangle{CBA}}} = \\left(\\dfrac{CK}{CA}\\right)^2 = \\left(\\dfrac{y}{x + y}\\right)^2$<br\/> $\\dfrac{S_{\\triangle{AHK}}}{S_{\\triangle{ABC}}} = \\dfrac{S_{\\triangle{AHK}}}{S_{\\triangle{CHK}}}.\\dfrac{S_{\\triangle{CHK}}}{S_{\\triangle{ABC}}} = \\dfrac{x}{y}. \\left(\\dfrac{y}{x + y}\\right)^2 = \\dfrac{xy}{(x+y)^2}$ (1)<br\/>M\u00e0 $S_{\\triangle{AHK}} = \\dfrac{3}{16}S_{\\triangle{ABC}}$ (gi\u1ea3 thi\u1ebft)<br\/> $\\Rightarrow \\dfrac{S_{\\triangle{AHK}}}{S_{\\triangle{ABC}}} = \\dfrac{3}{16}$ (2)<br\/>T\u1eeb (1) v\u00e0 (2) $\\Rightarrow \\dfrac{xy}{(x+y)^2} = \\dfrac{3}{16}$ <br\/>$\\Leftrightarrow 3(x + y)^2 = 16xy$<br\/>$\\Leftrightarrow 3x^2 + 3y^2 - 10xy = 0$<br\/>$\\Leftrightarrow 3x^2 - 9xy - xy + 3y^2 = 0$<br\/> $\\Leftrightarrow 3x(x - 3y) - y(x - 3y) = 0$<br\/> $\\Leftrightarrow (3x - y)(x - 3y) = 0$ <br\/>$\\Leftrightarrow \\left[\\begin{array}{l} 3x - y = 0\\\\ x - 3y = 0 \\end{array} \\right.$<br\/> $\\Leftrightarrow \\left[\\begin{array}{l} \\dfrac{x}{y} = \\dfrac{1}{3}\\\\ \\dfrac{x}{y} = 3 \\end{array} \\right.$<br\/>V\u1eady $\\dfrac{AK}{KC} = \\dfrac{1}{3}$ ho\u1eb7c $\\dfrac{AK}{KC} = 3$<br\/>\u0110\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>D. $\\dfrac{AK}{KC} = \\dfrac{1}{3}$ ho\u1eb7c $\\dfrac{AK}{KC} = 3$<\/span><\/span>","column":2}]}],"id_ques":1763},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["150"]]],"list":[{"point":10,"width":50,"content":"","type_input":"","ques":"<span class='basic_left'> Cho h\u00ecnh v\u1ebd nh\u01b0 sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai17/lv3/img\/H8C3B4_K105.png' \/><\/center><br\/>T\u00ednh $S_{\\triangle{ABC}}$ <br\/><b>\u0110\u00e1p \u00e1n:<\/b> $S_{\\triangle{ABC}}$ = _input_ ($cm^2$)<\/span>","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> Ch\u1ee9ng minh $\\triangle{ABC}$ $\\backsim$ $\\triangle{HAC}$ $\\rightarrow$ T\u00ednh $AC$<br\/><b>B\u01b0\u1edbc 2:<\/b> Ch\u1ee9ng minh $\\triangle{ABC}$ $\\backsim$ $\\triangle{HBA}$ $\\rightarrow$ T\u00ednh $AB$<br\/><b>B\u01b0\u1edbc 3:<\/b> T\u00ednh $S_{\\triangle{ABC}}$.<br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai17/lv3/img\/H8C3B4_K105.png' \/><\/center><br\/>Ta c\u00f3: $BC = BH + HC = 9 + 16 = 25$ ($cm$)<br\/>X\u00e9t $\\triangle$ vu\u00f4ng $ABC$ v\u00e0 $\\triangle$ vu\u00f4ng $HAC$ c\u00f3:<br\/>$\\widehat{C} $ chung<br\/> $\\Rightarrow$ $\\triangle$ vu\u00f4ng $ABC$ $\\backsim$ $\\triangle$ vu\u00f4ng $HAC$ (g\u00f3c-g\u00f3c)<br\/>$\\Rightarrow \\dfrac{AC}{HC} = \\dfrac{BC}{AC}$ <br\/>$\\Rightarrow AC^2 = BC.HC = 25.16 \\Rightarrow AC = 20$<br\/>T\u01b0\u01a1ng t\u1ef1 ch\u1ee9ng minh \u0111\u01b0\u1ee3c: $\\triangle{ABC}$ $\\backsim$ $\\triangle{HBA}$ (g\u00f3c-g\u00f3c)<br\/>$\\Rightarrow \\dfrac{AB}{HB} = \\dfrac{BC}{BA}$ <br\/>$\\Rightarrow AB^2 = BC.HB = 25.9 \\Rightarrow AB = 15$<br\/> $S_{\\triangle{ABC}} = \\dfrac{AB.AC}{2} = \\dfrac{15.20}{2} = 150 $ ($cm^2$)<br\/>V\u1eady s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 <span class='basic_pink'>150<\/span> <\/span> "}]}],"id_ques":1764},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["="]]],"list":[{"point":10,"width":50,"content":"","type_input":"","ques":"<span class='basic_left'> Cho tam gi\u00e1c $ABC$ c\u00f3 hai g\u00f3c $B$ v\u00e0 $C$ th\u1ecfa m\u00e3n \u0111i\u1ec1u ki\u1ec7n $\\widehat{B} - \\widehat{C} = 90^o$. K\u1ebb \u0111\u01b0\u1eddng cao $AH$. So s\u00e1nh $AH^2$ v\u00e0 $BH.CH$<br\/><b>\u0110\u00e1p \u00e1n:<\/b> $AH^2$ _input_ $BH.CH$<\/span>","hint":"","explain":"<span class='basic_left'><span class='basic_green'>Ph\u00e2n t\u00edch b\u00e0i to\u00e1n theo s\u01a1 \u0111\u1ed3 ng\u01b0\u1ee3c:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai17/lv3/img\/H8C3B4_K108.png' \/><\/center><br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai17/lv3/img\/H8C3B4_K106.png' \/><\/center><br\/>+) $\\triangle{ABH}$ c\u00f3: <br\/>$\\widehat{ABC} = \\widehat{BAH} + \\widehat{AHB}$ (t\u00ednh ch\u1ea5t g\u00f3c ngo\u00e0i tam gi\u00e1c)<br\/>$\\Rightarrow \\widehat{ABC} = \\widehat{BAH} + 90^o$ <b>(1)<\/b><br\/>L\u1ea1i c\u00f3: $\\widehat{ABC} - \\widehat{ACB} = 90^o$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow \\widehat{ABC} = \\widehat{ACB} + 90^o$ <b>(2)<\/b><br\/>T\u1eeb (1) v\u00e0 (2) $\\Rightarrow \\widehat{BAH} = \\widehat{ACB}$ hay $\\widehat{BAH} = \\widehat{ACH}$<br\/>X\u00e9t $\\triangle$ vu\u00f4ng $ABH$ v\u00e0 $\\triangle$ vu\u00f4ng $CAH$ c\u00f3:<br\/>$\\widehat{BAH} = \\widehat{ACH}$ (ch\u1ee9ng minh tr\u00ean)<br\/> $\\Rightarrow$ $\\triangle$ vu\u00f4ng $ABH$ $\\backsim$ $\\triangle$ vu\u00f4ng $CAH$ (g\u00f3c-g\u00f3c) <br\/>$\\Rightarrow \\dfrac{AH}{CH} = \\dfrac{BH}{AH}$ (c\u1eb7p c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng t\u1ec9 l\u1ec7)<br\/>$\\Rightarrow AH^2 = BH.CH$<br\/>V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 <span class='basic_pink'> \"= \"<\/span> "}]}],"id_ques":1765},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[2]],"list":[{"point":10,"ques":" <span class='basic_left'> Cho tam gi\u00e1c $ABC$ vu\u00f4ng t\u1ea1i $A$, \u0111\u01b0\u1eddng cao $AH$. Bi\u1ebft $\\dfrac{AB}{AC} = \\dfrac{2}{3}$. T\u00ednh t\u1ec9 s\u1ed1 $\\dfrac{HB}{HC}$. <br\/><\/span>","select":[" A. $\\dfrac{HB}{HC} = \\dfrac{2}{3}$ "," B. $\\dfrac{HB}{HC} = \\dfrac{4}{9}$ ","C. $\\dfrac{HB}{HC} = \\dfrac{1}{3}$ ","D. $\\dfrac{HB}{HC} = \\dfrac{3}{2}$ "],"hint":"","explain":"<span class='basic_left'><span class='basic_green'>S\u01a1 \u0111\u1ed3 ng\u01b0\u1ee3c:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai17/lv3/img\/H8C3B4_K109.png' \/><\/center><br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai17/lv3/img\/H8C3B4_K107.png' \/><\/center><br\/> Ta c\u00f3: $\\dfrac{S_{\\triangle{AHB}}}{S_{\\triangle{CHA}}} = \\dfrac{ \\dfrac{AH.HB}{2}}{ \\dfrac{AH.HC}{2}} = \\dfrac{HB}{HC}$ <b>(1)<\/b><br\/> X\u00e9t $\\triangle$ vu\u00f4ng $AHB$ v\u00e0 $\\triangle$ vu\u00f4ng $CHA$ c\u00f3:<br\/>$\\widehat{ABH} = \\widehat{HAC}$ (c\u00f9ng ph\u1ee5 $\\widehat{BAH}$ )<br\/> $\\Rightarrow$ $\\triangle$ vu\u00f4ng $AHB$ $\\backsim$ $\\triangle$ vu\u00f4ng $CHA$ (g\u00f3c-g\u00f3c)<br\/>$\\Rightarrow \\dfrac{S_{\\triangle{AHB}}}{S_{\\triangle{CHA}}} = \\left(\\dfrac{AB}{AC}\\right)^2 = \\left(\\dfrac{2}{3}\\right)^2 = \\dfrac{4}{9}$ <b>(2)<\/b><br\/>T\u1eeb (1) v\u00e0 (2) $\\Rightarrow \\dfrac{HB}{HC} = \\dfrac{4}{9}$<br\/>V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>B. $\\dfrac{HB}{HC} = \\dfrac{4}{9}$<\/span> ","column":2}]}],"id_ques":1766},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["5,4"],["9,6"]]],"list":[{"point":10,"width":50,"content":"","type_input":"","ques":"<span class='basic_left'> Cho h\u00ecnh v\u1ebd nh\u01b0 sau: <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai17/lv3/img\/H8C3B4_K110.png' \/><\/center><br\/>T\u00ednh $x, y$ <br\/><b>\u0110\u00e1p \u00e1n:<\/b> $x$ = _input_ ($cm$); $y$ = _input_ ($cm$)<\/span>","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/><b>B\u01b0\u1edbc 1:<\/b> T\u00ednh $BC$<br\/><b>B\u01b0\u1edbc 2:<\/b> Ch\u1ee9ng minh $\\triangle{AHB}$ $\\backsim$ $\\triangle{CAB}$ <br\/><b>B\u01b0\u1edbc 3:<\/b> T\u00ednh $x, y$.<br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai17/lv3/img\/H8C3B4_K110.png' \/><\/center><br\/>$\\triangle{ABC}$ vu\u00f4ng t\u1ea1i $A$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow AB^2 + AC^2 = BC^2$ (\u0111\u1ecbnh l\u00ed Py-ta-go)<br\/>$\\Rightarrow BC^2 = 9^2 + 12^2 = 225 \\Rightarrow BC = 15 \\text{(cm)} $ <br\/>X\u00e9t $\\triangle$ vu\u00f4ng $AHB$ v\u00e0 $\\triangle$ vu\u00f4ng $CBA$ c\u00f3:<br\/>$\\widehat{ABH} = \\widehat{CAH}$ (c\u00f9ng ph\u1ee5 $\\widehat{HAB}$<br\/> $\\Rightarrow$ $\\triangle$ vu\u00f4ng $AHB$ $\\backsim$ $\\triangle$ vu\u00f4ng $CAB$ (g\u00f3c-g\u00f3c)<br\/>$\\Rightarrow \\dfrac{AB}{CB} = \\dfrac{HB}{AB}$ (c\u1eb7p c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng t\u1ec9 l\u1ec7)<br\/>$\\Rightarrow HB = \\dfrac{AB^2}{CB} = \\dfrac{9^2}{15} = 5,4 \\text{(cm)} $ hay $x = 5,4cm$<br\/>L\u1ea1i c\u00f3: $x + y = BC = 15 \\Rightarrow y = 15 - x = 15 - 5,4 = 9,6 \\text{(cm)}$ <br\/>V\u1eady c\u00e1c s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 <span class='basic_pink'>5,4 ; 9,6<\/span> <\/span> "}]}],"id_ques":1767},{"time":24,"part":[{"title":"Ch\u1ecdn <u>nh\u1eefng<\/u> \u0111\u00e1p \u00e1n \u0111\u00fang","title_trans":"Ch\u1ecdn \u0111\u01b0\u1ee3c nhi\u1ec1u \u0111\u00e1p \u00e1n","temp":"checkbox","correct":[["1","2","3"]],"list":[{"point":10,"img":"","ques":"<span class='basic_left'>Cho tam gi\u00e1c $ABC$ vu\u00f4ng t\u1ea1i $A$, \u0111\u01b0\u1eddng cao $AH$. G\u1ecdi $I$ v\u00e0 $K$ l\u1ea7n l\u01b0\u1ee3t l\u00e0 h\u00ecnh chi\u1ebfu c\u1ee7a \u0111i\u1ec3m $H$ l\u00ean $AB, AC$. Bi\u1ebft $BC = 10cm, AH = 4cm$.<br\/><b>H\u00e3y ch\u1ecdn nh\u1eefng \u0111\u00e1p \u00e1n \u0111\u00fang<\/b><\/span><br\/>","hint":"","column":2,"number_true":2,"select":["A. $\\triangle{AIK} \\backsim \\triangle{ACB} $","B. $S_{\\triangle{AIK}} = 3,2 \\text{cm}^2$","C. $\\widehat{AIK} = \\widehat{ACB}$","D. $S_{\\triangle{AIK}} = 40 \\text{cm}^2$"],"explain":"<span class='basic_left'><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai17/lv3/img\/H8C3B4_K111.png' \/><\/center><br\/>T\u1ee9 gi\u00e1c $AIHK$ c\u00f3:<br\/> $\\widehat{A} = \\widehat{I} = \\widehat{K} = 90^o$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow$ T\u1ee9 gi\u00e1c $AIHK$ l\u00e0 h\u00ecnh ch\u1eef nh\u1eadt (d\u1ea5u hi\u1ec7u nh\u1eadn bi\u1ebft)<br\/>G\u1ecdi $O$ l\u00e0 giao \u0111i\u1ec3m c\u1ee7a $AH$ v\u00e0 $IK$<br\/>$\\Rightarrow$ $OA = OH = OI = OK$ (t\u00ednh ch\u1ea5t h\u00ecnh ch\u1eef nh\u1eadt)<br\/>$\\Rightarrow$ Tam gi\u00e1c $AOI$ c\u00e2n t\u1ea1i $O$ (t\u00ednh ch\u1ea5t)<br\/>$\\Rightarrow$ $\\widehat{OIA} = \\widehat{OAI}$ (\u0111\u1ecbnh ngh\u0129a) (1)<br\/> L\u1ea1i c\u00f3: $\\widehat{OAI} + \\widehat{HAC} = 90^o$ v\u00e0 $\\widehat{HAC} + \\widehat{HCA} = 90^o$<br\/>$\\Rightarrow$ $\\widehat{OAI} = \\widehat{HCA}$ (2)<br\/>T\u1eeb (1) v\u00e0 (2) $\\Rightarrow$ $\\widehat{OIA} = \\widehat{HCA}$ hay $\\widehat{AIK} = \\widehat{ACB}$ <b>(\u0111\u00e1p \u00e1n C \u0111\u00fang)<\/b><br\/> X\u00e9t $\\triangle$ vu\u00f4ng $AIK$ v\u00e0 $\\triangle$ vu\u00f4ng $ACB$ c\u00f3:<br\/>$\\widehat{AIK} = \\widehat{ACB}$ (ch\u1ee9ng minh tr\u00ean)<br\/> $\\Rightarrow$ $\\triangle$ vu\u00f4ng $AIK$ $\\backsim$ $\\triangle$ vu\u00f4ng $ACB$ (g\u00f3c - g\u00f3c) <b>(\u0111\u00e1p \u00e1n A \u0111\u00fang)<\/b><br\/>$\\Rightarrow$ $\\dfrac{S_{\\triangle{AIK}}}{S_{\\triangle{ACB}}} = \\left(\\dfrac{IK}{BC}\\right)^2 = \\left(\\dfrac{AH}{BC}\\right)^2 $<br\/> $\\Rightarrow$ $S_{\\triangle{AIK}} = \\left(\\dfrac{AH}{BC}\\right)^2.S_{\\triangle{ACB}} $<br\/> L\u1ea1i c\u00f3: $S_{\\triangle{ACB}} = \\dfrac{1}{2}.BC.AH = \\dfrac{1}{2}.10.4 = 20 (\\text{cm}^2)$ <b>(\u0111\u00e1p \u00e1n D sai)<\/b><br\/> $\\Rightarrow$ $S_{\\triangle{AIK}} = \\left(\\dfrac{4}{10}\\right)^2.20 = 3,2 (\\text{cm}^2)$ <b>(\u0111\u00e1p \u00e1n B \u0111\u00fang) <\/b><br\/>V\u1eady nh\u1eefng \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0 <span class='basic_pink'>A, B, C<\/span><br\/> "}]}],"id_ques":1768},{"time":24,"part":[{"title":"\u0110i\u1ec1n s\u1ed1 th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["15"],["20"],["25"]]],"list":[{"point":10,"width":50,"content":"","type_input":"","ques":"<span class='basic_left'> Cho tam gi\u00e1c $ABC$ vu\u00f4ng t\u1ea1i $A$, \u0111\u01b0\u1eddng cao $AH$ ($H \\in BC$). Bi\u1ebft $BH = 9cm, CH = 16cm$. T\u00ednh c\u00e1c c\u1ea1nh c\u1ee7a tam gi\u00e1c $ABC$. <br\/><b>\u0110\u00e1p \u00e1n:<\/b> $AB$ = _input_ ($cm$); $AC$ = _input_ ($cm$), $BC$ = _input_ ($cm$)<\/span>","hint":"","explain":"<span class='basic_left'><span class='basic_green'>Ph\u00e2n t\u00edch b\u00e0i to\u00e1n theo s\u01a1 \u0111\u1ed3 ng\u01b0\u1ee3c, ta c\u00f3:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai17/lv3/img\/H8C3B4_K112.png' \/><\/center><br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/><center><img src='https://www.luyenthi123.com/file/luyenthi123/lop8/toan/hinhhoc/bai17/lv3/img\/H8C3B4_K113.png' \/><\/center><br\/>X\u00e9t $\\triangle$ vu\u00f4ng $HAB$ v\u00e0 $\\triangle$ vu\u00f4ng $HCA$ c\u00f3:<br\/>$\\widehat{ABH} = \\widehat{CAH}$ (c\u00f9ng ph\u1ee5 $\\widehat{HAB}$)<br\/> $\\Rightarrow$ $\\triangle$ vu\u00f4ng $HAB$ $\\backsim$ $\\triangle$ vu\u00f4ng $HCA$ (g\u00f3c-g\u00f3c)<br\/>$\\Rightarrow \\dfrac{HA}{HC} = \\dfrac{HB}{HA}$ (c\u1eb7p c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng t\u1ec9 l\u1ec7)<br\/>$\\Rightarrow HA^2 = HB.HC = 9.16 = 144 \\Rightarrow HA = 12 \\text{(cm)}$ <br\/>$\\triangle{ABH}$ vu\u00f4ng t\u1ea1i $H$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow AH^2 + BH^2 = AB^2$ (\u0111\u1ecbnh l\u00ed Py-ta-go)<br\/>$\\Rightarrow AB^2 = 12^2 + 9^2 = 225 \\Rightarrow AB = 15 \\text{(cm)}$<br\/> $\\triangle{ACH}$ vu\u00f4ng t\u1ea1i $H$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow AH^2 + CH^2 = AC^2$ (\u0111\u1ecbnh l\u00ed Py-ta-go)<br\/>$\\Rightarrow AC^2 = 12^2 + 16^2 = 400 \\Rightarrow AC = 20 \\text{(cm)}$<br\/>$\\triangle{ABC}$ vu\u00f4ng t\u1ea1i $A$ (gi\u1ea3 thi\u1ebft)<br\/>$\\Rightarrow AB^2 + AC^2 = BC^2$ (\u0111\u1ecbnh l\u00ed Py-ta-go)<br\/>$\\Rightarrow BC^2 = 15^2 + 20^2 = 625 \\Rightarrow BC = 25 \\text{(cm)}$ <br\/>V\u1eady c\u00e1c s\u1ed1 c\u1ea7n \u0111i\u1ec1n v\u00e0o \u00f4 tr\u1ed1ng l\u00e0 <span class='basic_pink'>15; 20; 25<\/span> <\/span> "}]}],"id_ques":1769}],"lesson":{"save":0,"level":3}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý