đang tải bài tập bài
{"segment":[{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["120"]]],"list":[{"point":10,"width":50,"content":"","type_input":"","ques":"Cho tam gi\u00e1c $ABC$, tia ph\u00e2n gi\u00e1c g\u00f3c $A$ c\u1eaft c\u1ea1nh $BC$ \u1edf $D$. \u0110\u01b0\u1eddng th\u1eb3ng qua $D$ song song v\u1edbi $AB$ c\u1eaft $AC$ \u1edf $M$. T\u00ednh $\\widehat{AMD}$ bi\u1ebft $\\widehat{A} = 60^{o}$. <br\/> <b> \u0110\u00e1p \u00e1n l\u00e0: <\/b> $\\widehat{AMD}=$ _input_ $^{o}$","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> <b> B\u01b0\u1edbc 1: <\/b> Ch\u1ee9ng minh $\\triangle{AMD}$ c\u00e2n t\u1ea1i $M$ <br\/> <b> B\u01b0\u1edbc 2: <\/b> T\u00ednh $\\widehat{AMD}$ <br\/><br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop7/toan/hinhhoc/bai21/lv3/img\/H7C3B21_K10.png' \/><\/center> <br\/> $\\blacktriangleright$ V\u00ec $AD$ l\u00e0 tia ph\u00e2n gi\u00e1c $\\widehat{A}$ n\u00ean $\\widehat{A_{1}} = \\widehat{A_{2}}$ (\u0111\u1ecbnh ngh\u0129a) (1) <br\/> M\u1eb7t kh\u00e1c $DM \/\/ AB$ (gt) n\u00ean $\\widehat{A_{1}} = \\widehat{D_{1}}$ (so le trong) (2) <br\/> T\u1eeb (1) v\u00e0 (2) $\\Rightarrow$ $\\widehat{A_{2}} = \\widehat{D_{1}}$ <br\/> $\\triangle{AMD}$ c\u00f3 $\\widehat{A_{2}} = \\widehat{D_{1}}$ n\u00ean $\\triangle{AMD}$ c\u00e2n t\u1ea1i $M$ <br\/> Ta c\u00f3: $\\widehat{AMD} + \\widehat{A_{2}} + \\widehat{D_{1}} = 180^{o}$ (t\u1ed5ng ba g\u00f3c trong $\\triangle{AMD}$) <br\/> $ \\begin{align} \\Rightarrow \\widehat{AMD} &= 180^{o} - (\\widehat{A_{2}} + \\widehat{D_{1}}) \\\\ &= 180^{o} - (\\widehat{A_{2}} + \\widehat{A_{2}}) (\\text{v\u00ec} \\hspace{0,2cm} \\widehat{A_{2}} = \\widehat{D_{1}}) \\\\ &= 180^{o} - \\widehat{A} (\\text{v\u00ec} \\hspace{0,2cm} \\widehat{A_{1}} = \\widehat{A_{2}}) \\\\ &= 180^{o} - 60^{o} \\\\ &= 120^{o} \\end{align}$ <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p c\u1ea7n \u0111i\u1ec1n l\u00e0: $120$ <\/span>"}]}],"id_ques":1941},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["EF","FE"]]],"list":[{"point":10,"width":50,"content":"","type_input":"","ques":"Cho tam gi\u00e1c $ABC$, \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a g\u00f3c $A$ v\u00e0 \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a g\u00f3c $B$ c\u1eaft nhau t\u1ea1i $O$. Qua $O$ k\u1ebb $EF \/\/ BC$ ($E \\in AB; F \\in AC$) <br\/> Khi \u0111\u00f3: $BE + CF =$ _input_ ","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> <b> B\u01b0\u1edbc 1: <\/b> Ch\u1ee9ng minh $BE = EO$ b\u1eb1ng c\u00e1ch ch\u1ee9ng minh $\\triangle{BEO}$ c\u00e2n t\u1ea1i $E$ <br\/> <b> B\u01b0\u1edbc 2: <\/b> Ch\u1ee9ng minh $OF = FC$ b\u1eb1ng c\u00e1ch ch\u1ee9ng minh $\\triangle{OFC}$ c\u00e2n t\u1ea1i $F$ <br\/><br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop7/toan/hinhhoc/bai21/lv3/img\/H7C3B21_K05.png' \/><\/center> $\\blacktriangleright$ X\u00e9t $\\triangle{BOE}$ c\u00f3: <br\/> $\\widehat{B_{1}} = \\widehat{B_{2}}$ (gi\u1ea3 thi\u1ebft) <br\/> $\\widehat{O_{1}} = \\widehat{B_{2}}$ (so le trong) <br\/> $\\Rightarrow$ $\\widehat{B_{1}} = \\widehat{O_{1}}$ $\\Rightarrow$ $\\triangle{BEO}$ c\u00e2n t\u1ea1i $E$ <br\/> $\\Rightarrow$ $BE = EO$ (\u0111\u1ecbnh ngh\u0129a tam gi\u00e1c c\u00e2n) (1)<br\/> $\\blacktriangleright$ X\u00e9t $\\triangle{CFO}$ c\u00f3: <br\/> $\\widehat{C_{1}} = \\widehat{C_{2}}$ (gi\u1ea3 thi\u1ebft) <br\/> $\\widehat{O_{2}} = \\widehat{C_{2}}$ (so le trong) <br\/> $\\Rightarrow$ $\\widehat{O_{2}} = \\widehat{C_{1}}$ $\\Rightarrow$ $\\triangle{OFC}$ c\u00e2n t\u1ea1i $F$ (t\u00ednh ch\u1ea5t) <br\/> $\\Rightarrow$ $OF = FC$ (\u0111\u1ecbnh ngh\u0129a tam gi\u00e1c c\u00e2n) (2) <br\/> T\u1eeb (1) v\u00e0 (2)$\\Rightarrow$ $BE + FC = EF$ <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p c\u1ea7n \u0111i\u1ec1n l\u00e0: $EF$ <\/span>"}]}],"id_ques":1942},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":10,"ques":"Cho tam gi\u00e1c $ABC$ c\u00f3 $\\widehat{A} = 90^{o}$. Tr\u00ean c\u1ea1nh $AC$ l\u1ea5y \u0111i\u1ec3m $D$ sao cho $\\widehat{ABC} = 3\\widehat{ABD}$. Tr\u00ean c\u1ea1nh $AB$ l\u1ea5y \u0111i\u1ec3m $E$ sao cho $\\widehat{ACB} = 3 \\widehat{ACE}$. G\u1ecdi $F$ l\u00e0 giao \u0111i\u1ec3m c\u1ee7a $DB$ v\u00e0 $CE$, $I$ l\u00e0 giao \u0111i\u1ec3m c\u00e1c tia ph\u00e2n gi\u00e1c c\u1ee7a $\\triangle{BFC}$. Trong c\u00e1c kh\u1eb3ng \u0111\u1ecbnh sau kh\u1eb3ng \u0111\u1ecbnh n\u00e0o \u0111\u00fang? ","select":["A. $\\widehat{BFC} = 90^{o} $ ","B. $\\widehat{BFC} = 120^{o}$ ","C. $\\triangle{DEI}$ l\u00e0 tam gi\u00e1c \u0111\u1ec1u ","D. B v\u00e0 C \u0111\u00fang "],"hint":"","explain":" <span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> <b> B\u01b0\u1edbc 1: <\/b> T\u00ednh $\\widehat{BFC}$ <br\/> <b> B\u01b0\u1edbc 2: <\/b> So s\u00e1nh $EI; ED; DI$ \u0111\u1ec3 bi\u1ebft $\\triangle{ABC}$ \u0111\u1ec1u l\u00e0 \u0111\u00fang hay sai <br\/><br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop7/toan/hinhhoc/bai21/lv3/img\/H7C3B21_K01.png' \/><\/center> <br\/> Ta c\u00f3: <br\/> $\\blacktriangleright$ $\\widehat{B} + \\widehat{C} = 90^{o}$ (v\u00ec $\\triangle{ABC}$ vu\u00f4ng t\u1ea1i $A$) <br\/> V\u00ec $\\widehat{ABC} = 3\\widehat{ABD}$; $\\widehat{ACB} = 3\\widehat{ACE}$ (gt) <br\/> $\\Rightarrow$ $\\widehat{FBC} + \\widehat{FCB} = \\dfrac{2}{3}(\\widehat{B} + \\widehat{C}) = \\dfrac{2}{3}. 90^{o} = 60^{o}$ <br\/> Trong $\\triangle{FBC}$ c\u00f3: $\\widehat{FCB} + \\widehat{FBC} + \\widehat{BFC} = 180^{o}$ (t\u1ed5ng ba g\u00f3c trong $1$ tam gi\u00e1c) <br\/> $ \\begin{align} \\Rightarrow \\widehat{BFC} &= 180^{o} - (\\widehat{FBC} + \\widehat{FCB}) \\\\ &= 180^{o} - 60^{o} \\\\ &= 120^{o}\\end{align} $ <br\/> $\\blacktriangleright$ V\u00ec $\\widehat{BFC} = 120^{o}$ $\\Rightarrow$ $\\widehat{BFE} = \\widehat{CFD} = 180^{o} - 120^{o} = 60^{o}$ (c\u00f9ng k\u1ec1 b\u00f9 v\u1edbi $\\widehat{BFC}$) <br\/> V\u00ec $I$ l\u00e0 giao \u0111i\u1ec3m $3$ tia ph\u00e2n gi\u00e1c c\u1ee7a $\\triangle{BFC}$ <br\/> $\\Rightarrow$ $FI$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{BFC}$ <br\/> Do \u0111\u00f3 $\\widehat{BFI} = \\widehat{CFI} = \\dfrac{\\widehat{BFC}}{2} = \\dfrac{120^{o}}{2} = 60^{o}$ <br\/> $\\triangle{BFE} = \\triangle{BFI}$ (g.c.g) v\u00ec: <br\/> $\\begin{cases} \\widehat{BFE} = \\widehat{BFI} = 60^{o} (cmt) \\\\ BF \\hspace{0,2cm} \\text{chung} \\\\ \\widehat{EBF} = \\widehat{FBI} (\\widehat{ABD} = \\dfrac{1}{3}\\widehat{ABC}; \\widehat{DBI} = \\dfrac{1}{2}\\widehat{DBC}) \\end{cases}$ <br\/> $\\Rightarrow$ $BI = BE$ (hai c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng) <br\/> $\\blacktriangleright$ $\\triangle{BED} = \\triangle{BFI}$ (c.g.c) v\u00ec: <br\/> $\\begin{cases} BE = BI (cmt) \\\\ \\widehat{EBD} = \\widehat{IBD} (\\triangle{EBF} = \\triangle{IBF}) \\\\ BD \\hspace{0,2cm} \\text{chung} \\end{cases}$ <br\/> $\\Rightarrow$ $ED = DI$ (hai c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng) (1) <br\/> $\\blacktriangleright$ $\\triangle{CFD} = \\triangle{CFI}$ (g.c.g) v\u00ec: <br\/> $\\begin{cases} \\widehat{CFD} = \\widehat{CFI} = 60^{o} (cmt) \\\\ FC \\hspace{0,2cm} \\text{chung} \\\\ \\widehat{ICF} = \\widehat{DCF} (\\widehat{ACB} = 3\\widehat{ACE}; \\widehat{ECI} = \\widehat{BCI}) \\end{cases}$ <br\/> $\\Rightarrow$ $CI = CD$ <br\/> $\\triangle{CDE} = \\triangle{CIE}$ (c.g.c) v\u00ec: <br\/> $\\begin{cases} CD = CI (cmt) \\\\ \\widehat{ICF} = \\widehat{DCF} (\\triangle{ICF} = \\triangle{DCF}) \\\\ FC \\hspace{0,2cm} \\text{chung} \\end{cases}$ <br\/> $\\Rightarrow$ $DE = EI$ (hai c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng) (2) <br\/> T\u1eeb (1) v\u00e0 (2) suy ra $DE = EI = ID$ <br\/> $\\Rightarrow$ $\\triangle{EID}$ l\u00e0 tam gi\u00e1c \u0111\u1ec1u <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: D <\/span>","column":2}]}],"id_ques":1943},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["3"]]],"list":[{"point":10,"width":50,"content":"","type_input":"","ques":"Cho tam gi\u00e1c $ABC$ c\u00f3 $\\widehat{A} = 90^{o}; AB = 8cm; AC = 15cm$. G\u1ecdi $O$ l\u00e0 giao \u0111i\u1ec3m c\u00e1c tia ph\u00e2n gi\u00e1c c\u1ee7a $\\triangle{ABC}$. T\u00ednh kho\u1ea3ng c\u00e1ch t\u1eeb $O$ \u0111\u1ebfn c\u00e1c c\u1ea1nh c\u1ee7a tam gi\u00e1c $ABC$. <br\/> <b> \u0110\u00e1p \u00e1n l\u00e0: <\/b> _input_$cm$ ","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> <b> B\u01b0\u1edbc 1: <\/b> T\u00ednh $BC$ <br\/> <b> B\u01b0\u1edbc 2: <\/b> Ch\u1ee9ng minh $OD = OE = OI = AD = AE$<br\/> <b> B\u01b0\u1edbc 3: <\/b> T\u00ednh $AD$ b\u1eb1ng c\u00e1ch quy v\u1ec1 c\u00e1c c\u1ea1nh $AB, AC, BC$ \u0111\u00e3 bi\u1ebft <br\/> C\u1ee5 th\u1ec3: $AD = AB - BD$; $AE = AC - EC$ <br\/> Ch\u1ee9ng minh: $BD = BI; CI = CE$ <br\/><br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop7/toan/hinhhoc/bai21/lv3/img\/H7C3B21_K02.png' \/><\/center> $\\blacktriangleright$ \u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Pitago cho $\\triangle{ABC}$ vu\u00f4ng t\u1ea1i $A$, ta c\u00f3: <br\/> $\\begin{align} BC^2 &= AB^2 + AC^2 \\\\ & = 8^2 + 15^2 \\\\ &= 64 + 225 \\\\ &= 289 \\end{align}$ <br\/> $\\Rightarrow$ $BC = 17(cm)$ <br\/> $\\blacktriangleright$ T\u1eeb $O$ k\u1ebb $OD \\perp AB; OI \\perp BC; OE \\perp AC$ <br\/> V\u00ec $O$ l\u00e0 giao \u0111i\u1ec3m c\u00e1c tia ph\u00e2n gi\u00e1c c\u1ee7a $\\triangle{ABC}$ <br\/> $\\Rightarrow$ $OI = OD = OE$ (t\u00ednh ch\u1ea5t ba \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c trong tam gi\u00e1c) (1) <br\/> V\u00ec $AO$ l\u00e0 tia ph\u00e2n gi\u00e1c $\\widehat{A}$ m\u00e0 $\\widehat{A} = 90^{o}$ <br\/> $\\Rightarrow$ $\\widehat{DAO} = \\widehat{EAO} = \\dfrac{\\widehat{A}}{2} = \\dfrac{90^{o}}{2} = 45^{o}$ <br\/>C\u00e1c tam gi\u00e1c vu\u00f4ng $ADO$ v\u00e0 $AEO$ c\u00f3 $\\widehat{DAO} = 45^{o}$ v\u00e0 $\\widehat{EAO} = 45^{o}$ <br\/> $\\Rightarrow$ $\\triangle{DAO}$ v\u00e0 $\\triangle{EAO}$ vu\u00f4ng c\u00e2n t\u1ea1i $D$ v\u00e0 $E$ <br\/> $\\Rightarrow$ $AD = DO$ v\u00e0 $AE = EO$ (\u0111\u1ecbnh ngh\u0129a tam gi\u00e1c c\u00e2n) (2) <br\/> T\u1eeb (1) v\u00e0 (2) $\\Rightarrow$ $OD = OE = OI = AD = AE$ <br\/> $\\blacktriangleright$ X\u00e9t hai tam gi\u00e1c vu\u00f4ng $ODB$ v\u00e0 $OIB$ c\u00f3: <br\/> $\\begin{cases} OD = OI (cmt) \\\\ BO \\hspace{0,2cm} \\text{chung} \\end{cases}$ <br\/> $\\Rightarrow$ $\\triangle{OBD} = \\triangle{OID}$ (c\u1ea1nh huy\u1ec1n - c\u1ea1nh g\u00f3c vu\u00f4ng) <br\/> $\\Rightarrow$ $BD = BI$ (hai c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng) <br\/> Ch\u1ee9ng minh t\u01b0\u01a1ng t\u1ef1 ta c\u00f3: $CI = CE$ <br\/> $\\blacktriangleright$ V\u00ec $AD = AB - BD = AB - BI$ <br\/> $AE = AC - EC = AC - IC$ <br\/> V\u1eady $AD + AE = (AB - BI) + (AC - IC) = AB + AC - (BI + IC) = AB + AC - BC$ <br\/> V\u00ec $AD = AE$ $\\Rightarrow$ $2AD = AB + AC - BC$ <br\/> Do \u0111\u00f3: $AD = \\dfrac{AB + AC - BC}{2} = \\dfrac{8 + 15 - 17}{2} = 3(cm)$ <br\/> $\\Rightarrow$ $OD = OE = OI = AD = 3cm$ <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p c\u1ea7n \u0111i\u1ec1n l\u00e0: $3$ <\/span>"}]}],"id_ques":1944},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[1]],"list":[{"point":10,"ques":"Cho g\u00f3c $xOy$, tr\u00ean $Ox$ l\u1ea5y \u0111i\u1ec3m $A$ v\u00e0 $B$, tr\u00ean $Oy$ l\u1ea5y hai \u0111i\u1ec3m $C$ v\u00e0 $D$ sao cho $OA = OC; OB = OD$. T\u1eeb $A$ v\u00e0 $B$ k\u1ebb $An \/\/ Oy, Bn' \/\/ Oy$. T\u1eeb $C$ v\u00e0 $D$ k\u1ebb $Cm \/\/ Ox, Dm' \/\/ Ox$. Bi\u1ebft $An$ v\u00e0 $Cm$ c\u1eaft nhau t\u1ea1i $E$, $Bn'$ v\u00e0 $Dm'$ c\u1eaft nhau t\u1ea1i $F$. Khi \u0111\u00f3 $E, O, F$ th\u1eb3ng h\u00e0ng. <b> \u0110\u00fang <\/b> hay <b> sai <\/b>? ","select":["A. \u0110\u00daNG ","B. SAI "],"hint":"","explain":" <span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> <b> B\u01b0\u1edbc 1: <\/b> Ch\u1ee9ng minh $OE$ l\u00e0 tia ph\u00e2n gi\u00e1c $\\widehat{xOy}$ b\u1eb1ng c\u00e1ch ch\u1ee9ng minh $\\widehat{O_{1}} = \\widehat{O_{2}}$ <br\/> <b> B\u01b0\u1edbc 2: <\/b> Ch\u1ee9ng minh $OF$ l\u00e0 tia ph\u00e2n gi\u00e1c $\\widehat{xOy}$ b\u1eb1ng c\u00e1ch t\u01b0\u01a1ng t\u1ef1 <br\/><br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span> <br\/> <img src='https://www.luyenthi123.com/file/luyenthi123/lop7/toan/hinhhoc/bai21/lv3/img\/H7C3B21_K03A.png' \/> <br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop7/toan/hinhhoc/bai21/lv3/img\/H7C3B21_K03.png' \/><\/center> <br\/> <br\/> $\\blacktriangleright$ N\u1ed1i $OE$, x\u00e9t $\\triangle{OAE}$ v\u00e0 $\\triangle{OCE}$ c\u00f3: <br\/> $\\begin{cases} OE \\hspace{0,2cm} \\text{chung} \\\\ \\widehat{O_{1}} = \\widehat{E_{2}} (\\text{so} \\hspace{0,2cm} \\text{le} \\hspace{0,2cm} \\text{trong}) (1) \\\\ \\widehat{O_{2}} = \\widehat{E_{1}} (\\text{so} \\hspace{0,2cm} \\text{le} \\hspace{0,2cm} \\text{trong}) (2) \\end{cases}$ <br\/> $\\Rightarrow$ $\\triangle{OAE} = \\triangle{ECO}$ (g.c.g) $\\Rightarrow$ $AE = CO$ <br\/> M\u1eb7t kh\u00e1c ta c\u00f3: $OA = OC$ (gt) $\\Rightarrow$ $OA = AE$ <br\/> $\\Rightarrow$ $\\triangle{OAE}$ c\u00e2n t\u1ea1i $A$, suy ra $\\widehat{O_{1}} = \\widehat{E_{1}}$ (t\u00ednh ch\u1ea5t tam gi\u00e1c c\u00e2n) (3) <br\/> T\u1eeb (2), (3) $\\Rightarrow$ $\\widehat{O_{1}} = \\widehat{O_{2}}$ <br\/> $\\Rightarrow$ $OE$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{xOy}$ (*) <br\/> $\\blacktriangleright$ N\u1ed1i $OF$, t\u01b0\u01a1ng t\u1ef1 x\u00e9t $\\triangle{BOF}$ v\u00e0 $\\triangle{DOF}$ c\u00f3: <br\/> $\\begin{cases} \\widehat{BFO} = \\widehat{FOD} (\\text{so} \\hspace{0,2cm} \\text{le} \\hspace{0,2cm} \\text{trong}) (4) \\\\ OF \\hspace{0,2cm} \\text{chung} \\\\ \\widehat{DFO} = \\widehat{BOF} (\\text{so} \\hspace{0,2cm} \\text{le} \\hspace{0,2cm} \\text{trong}) \\end{cases}$ <br\/> V\u1eady $\\triangle{OBF} = \\triangle{FDO}$ (g.c.g) <br\/> $\\Rightarrow$ $OD = BF$ m\u00e0 $OB = OD$ $\\Rightarrow$ $OB = BF$ <br\/> V\u1eady $\\triangle{BOF}$ c\u00e2n t\u1ea1i $B$ $\\Rightarrow$ $\\widehat{BFO} = \\widehat{BOF}$ (hai g\u00f3c t\u01b0\u01a1ng \u1ee9ng) (5) <br\/> T\u1eeb (4) v\u00e0 (5) $\\Rightarrow$ $\\widehat{BOF} = \\widehat{FOD}$ <br\/> V\u1eady $OF$ l\u00e0 \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c c\u1ee7a g\u00f3c $xOy$ (**) <br\/> T\u1eeb (*) v\u00e0 (**) suy ra $OE; OF$ c\u00f9ng l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{xOy}$ <br\/> V\u1eady $OE$ tr\u00f9ng $OF$ hay $O; E; F$ th\u1eb3ng h\u00e0ng <br\/> V\u1eady kh\u1eb3ng \u0111\u1ecbnh tr\u00ean l\u00e0 <span class='basic_pink'> \u0110\u00daNG <\/span> <br\/> <span class='basic_green'> <i> Sai l\u1ea7m d\u1ec5 m\u1eafc ph\u1ea3i \u1edf ch\u1ed7: <br\/> +) Ch\u1ee9ng minh xong $\\triangle{OAE} = \\triangle{ECO}$ l\u00e0 k\u1ebft lu\u1eadn ngay $\\widehat{O_{1}} = \\widehat{O_{2}}$ \u0111\u1ec3 suy ra $OE$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{xOy}$ l\u00e0 sai, v\u00ec hai tam gi\u00e1c tr\u00ean b\u1eb1ng nhau th\u00ec$\\widehat{O_{2}}$ t\u01b0\u01a1ng \u1ee9ng v\u1edbi $\\widehat{E_{1}}$ (ch\u1ee9 kh\u00f4ng t\u01b0\u01a1ng \u1ee9ng v\u1edbi $\\widehat{O_{1}}$) <br\/> +) Ta d\u1ec5 d\u00e0ng th\u1ea5y $OA \\neq OC$ th\u00ec $\\triangle{OAE}$ v\u00e0 $\\triangle{ECO}$ v\u1eabn b\u1eb1ng nhau theo tr\u01b0\u1eddng h\u1ee3p g.c.g <br\/> Nh\u01b0ng ta d\u1ec5 d\u00e0ng th\u1ea5y $\\widehat{E_{1}} = \\widehat{O_{2}}$ v\u00e0 $\\widehat{E_{2}} = \\widehat{O_{1}}$ v\u00e0 $\\widehat{O_{1}} \\neq \\widehat{O_{2}}$ n\u00ean $OE$ kh\u00f4ng ph\u1ea3i tia ph\u00e2n gi\u00e1c c\u1ee7a g\u00f3c $xOy$ <\/i> <\/span> ","column":2}]}],"id_ques":1945},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":10,"ques":"Cho tam gi\u00e1c $ABC$, tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{B}$ v\u00e0 $\\widehat{C}$ c\u1eaft nhau t\u1ea1i $O$, bi\u1ebft $\\widehat{A} = 70^{o}$. Kh\u1eb3ng \u0111\u1ecbnh n\u00e0o sau \u0111\u00e2y \u0111\u00fang? ","select":["A. $AO$ l\u00e0 tia ph\u00e2n gi\u00e1c $\\widehat{A}$ ","B. $\\widehat{BOC} = 125^{o}$ ","C. $\\widehat{BOC} = 120^{o}$ ","D. A v\u00e0 B \u0111\u00fang "],"hint":"","explain":" <span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> <b> B\u01b0\u1edbc 1: <\/b> Ch\u1ee9ng minh $OK = OI$ <br\/> <b> B\u01b0\u1edbc 2: <\/b> D\u1ef1a v\u00e0o \u0111\u1ecbnh l\u00fd t\u1ed5ng ba g\u00f3c t\u00ednh $\\widehat{BOC}$ <br\/><br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span> <br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop7/toan/hinhhoc/bai21/lv3/img\/H7C3B21_K04.png' \/><\/center> <br\/> <br\/> $\\blacktriangleright$ H\u1ea1 $OK \\perp AB; OI \\perp AC; OH \\perp BC$ <br\/> V\u00ec \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c g\u00f3c $B$ v\u00e0 g\u00f3c $C$ c\u1eaft nhau t\u1ea1i $O$ n\u00ean $O$ l\u00e0 giao \u0111i\u1ec3m ba \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c trong $\\triangle{ABC}$ <br\/> $\\Rightarrow$ $AO$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{A}$ <br\/>$\\blacktriangleright$ $\\triangle{ABC}$ c\u00f3 $BO$ v\u00e0 $CO$ l\u00e0 hai tia ph\u00e2n gi\u00e1c n\u00ean: <br\/> $\\widehat{B_{1}} = \\widehat{B_{2}} = \\dfrac{1}{2}\\widehat{B}$; $\\widehat{C_{1}} = \\widehat{C_{2}} = \\dfrac{1}{2}\\widehat{C}$ <br\/> $\\Rightarrow$ $\\widehat{B_{2}} + \\widehat{C_{2}} = \\dfrac{1}{2}(\\widehat{B} + \\widehat{C})$ (1) <br\/> $\\blacktriangleright$ $\\triangle{BOC}$ c\u00f3 $\\widehat{BOC} = 180^{o} - (\\widehat{B_{1}} + \\widehat{C_{1}})$ (\u0111\u1ecbnh l\u00fd t\u1ed5ng ba g\u00f3c trong tam gi\u00e1c) (2) <br\/> M\u00e0 $\\widehat{A} + \\widehat{B} + \\widehat{C} = 180^{o}$ (\u0111\u1ecbnh l\u00fd t\u1ed5ng ba g\u00f3c trong $\\triangle{ABC}$) <br\/> $\\Rightarrow$ $\\widehat{B} + \\widehat{C} = 180^{o} - \\widehat{A} = 180^{o} - 70^{o} = 110^{o}$ (3) <br\/> Thay (1) v\u00e0 (2), ta c\u00f3: $\\widehat{BOC} = 180^{o} - \\dfrac{1}{2}(\\widehat{B} + \\widehat{C})$ (4) <br\/> Thay (3) v\u00e0 (4), ta c\u00f3: $\\widehat{BOC} = 180^{o} - \\dfrac{1}{2}.110^{o} = 125^{o}$ <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: D <\/span> ","column":2}]}],"id_ques":1946},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["70"]]],"list":[{"point":10,"width":50,"content":"","type_input":"","ques":"Cho tam gi\u00e1c $ABC$, c\u00f3 $\\widehat{A} = 120^{o}$, c\u00e1c \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c $AD, BE, CF$. T\u00ednh chu vi $\\triangle{DEF}$ bi\u1ebft $DE = 21cm; DF = 20cm$ <br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop7/toan/hinhhoc/bai21/lv3/img\/H7C3B21_K06.png' \/><\/center> <br\/> <b> \u0110\u00e1p \u00e1n l\u00e0: <\/b> _input_ $cm$ ","hint":"Ch\u1ee9ng minh $\\triangle{DEF}$ vu\u00f4ng t\u1ea1i $D$","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> C\u1ea7n ch\u1ee9ng minh $DE \\perp DF$ b\u1eb1ng c\u00e1ch ch\u1ee9ng minh $DE$ v\u00e0 $DF$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a hai g\u00f3c k\u1ec1 b\u00f9 sau \u0111\u00f3 t\u00ednh $EF$ r\u1ed3i t\u00ednh chu vi $\\triangle{DEF}$ c\u1ee5 th\u1ec3: <br\/> <b> B\u01b0\u1edbc 1: <\/b> Ch\u1ee9ng minh $DE$ l\u00e0 tia ph\u00e2n gi\u00e1c g\u00f3c ngo\u00e0i t\u1ea1i $D$ c\u1ee7a tam gi\u00e1c $ABD$ <br\/> <b> B\u01b0\u1edbc 2: <\/b> Ch\u1ee9ng minh $DF$ l\u00e0 tia ph\u00e2n gi\u00e1c g\u00f3c ngo\u00e0i t\u1ea1i $D$ c\u1ee7a tam gi\u00e1c $ADC$ <br\/> <b> B\u01b0\u1edbc 3: <\/b> T\u00ednh $EF$ r\u1ed3i t\u00ednh chu vi tam gi\u00e1c $DEF$ <br\/><br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop7/toan/hinhhoc/bai21/lv3/img\/H7C3B21_K06.png' \/><\/center> <br\/> $\\blacktriangleright$ V\u00ec $AD$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{A}$ <br\/> N\u00ean $\\widehat{A_{1}} = \\widehat{A_{2}} = \\dfrac{\\widehat{A}}{2} = \\dfrac{120^{o}}{2} = 60^{o}$ (1) <br\/> M\u1eb7t kh\u00e1c $\\widehat{BAC}$ v\u00e0 $\\widehat{CAx}$ l\u00e0 hai g\u00f3c k\u1ec1 b\u00f9 n\u00ean $\\widehat{CAx} = 180^{o} - \\widehat{BAC} = 180^{o} - 120^{o} = 60^{o}$ (2) <br\/> $\\widehat{A_{4}} = \\widehat{A_{3}} = 60^{o}$ (\u0111\u1ed1i \u0111\u1ec9nh) (3) <br\/> T\u1eeb (1), (2), (3) $\\Rightarrow$ $\\widehat{A_{1}} = \\widehat{A_{2}} = \\widehat{A_{3}} = \\widehat{A_{4}} = 60^{o}$ <br\/> X\u00e9t $\\triangle{ABD}$ c\u00f3 $\\widehat{DAx}$ l\u00e0 g\u00f3c ngo\u00e0i t\u1ea1i \u0111\u1ec9nh $A$ <br\/> C\u00f3: $\\widehat{A_{2}} = \\widehat{A_{3}} = 60^{o}$ (cmt) <br\/> $\\Rightarrow$ $AC$ l\u00e0 tia ph\u00e2n gi\u00e1c $\\widehat{DAx}$ <br\/> $BE$ l\u00e0 tia ph\u00e2n gi\u00e1c g\u00f3c trong t\u1ea1i \u0111\u1ec9nh $B$ (gt) <br\/> Hai tia ph\u00e2n gi\u00e1c n\u00e0y c\u1eaft nhau t\u1ea1i $E$ suy ra $DE$ l\u00e0 tia ph\u00e2n gi\u00e1c g\u00f3c ngo\u00e0i t\u1ea1i $D$ c\u1ee7a tam gi\u00e1c $ABD$ (*) <br\/> $\\blacktriangleright$ X\u00e9t $\\triangle{ADC}$, l\u1eadp lu\u1eadn t\u01b0\u01a1ng t\u1ef1 ta c\u00f3 $DF$ l\u00e0 tia ph\u00e2n gi\u00e1c g\u00f3c ngo\u00e0i t\u1ea1i \u0111\u1ec9nh $D$ (**) <br\/> T\u1eeb (*) v\u00e0 (**) suy ra $DE \\perp DF$ (tia ph\u00e2n gi\u00e1c c\u1ee7a hai g\u00f3c k\u1ec1 b\u00f9) <br\/> $\\blacktriangleright$ \u00c1p d\u1ee5ng \u0111\u1ecbnh l\u00fd Pitago cho tam gi\u00e1c vu\u00f4ng $DEF$ ta \u0111\u01b0\u1ee3c: <br\/> $EF^2 = DE^2 + DF^2 = 21^2 + 20^2 = 841$ <br\/> $\\Rightarrow$ $EF = 29(cm)$ <br\/> Chu vi tam gi\u00e1c $DEF$ l\u00e0: $21 + 20 + 29 = 70(cm)$ <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p c\u1ea7n \u0111i\u1ec1n l\u00e0: $70$ <\/span> <br\/> <span class='basic_green'> <i> Nh\u1eadn x\u00e9t: \u0110\u1ec3 ch\u1ee9ng minh m\u1ed9t tia l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a g\u00f3c ta c\u00f3 th\u1ec3: <br\/> +) D\u00f9ng \u0111\u1ecbnh ngh\u0129a: Ch\u1ee9ng minh tia n\u00e0y n\u1eb1m gi\u1eefa hai c\u1ea1nh c\u1ee7a g\u00f3c v\u00e0 t\u1ea1o v\u1edbi hai c\u1ea1nh \u0111\u00f3 hai g\u00f3c b\u1eb1ng nhau <br\/> +) D\u00f9ng t\u00ednh ch\u1ea5t: Ch\u1ee9ng minh m\u1ed9t \u0111i\u1ec3m tr\u00ean tia n\u00e0y c\u00e1ch \u0111\u1ec1u hai c\u1ea1nh c\u1ee7a g\u00f3c <br\/> +) D\u00f9ng t\u00ednh ch\u1ea5t ba \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c (ho\u1eb7c hai tia ph\u00e2n gi\u00e1c ngo\u00e0i v\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a g\u00f3c trong kh\u00f4ng k\u1ec1) c\u1ee7a tam gi\u00e1c c\u00f9ng \u0111i qua m\u1ed9t \u0111i\u1ec3m <br\/> \u1ede b\u00e0i to\u00e1n n\u00e0y ta \u0111\u00e3 v\u1eadn d\u1ee5ng c\u00e1ch th\u1ee9 ba n\u00e0y <\/i> <\/span> "}]}],"id_ques":1947},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":10,"ques":"Cho tam gi\u00e1c $MNP$ c\u00f3 $\\widehat{N} = 45^{o}$, \u0111\u01b0\u1eddng cao $MH$, ph\u00e2n gi\u00e1c $NK$. Cho bi\u1ebft $\\widehat{NKM} = 45^{o}$. Kh\u1eb3ng \u0111\u1ecbnh n\u00e0o sau \u0111\u00e2y \u0111\u00fang? ","select":["A. $\\widehat{KHP} = 45^{o}$ ","B. $MN \/\/ KH$ ","C. $\\widehat{M_{1}} = \\widehat{M_{2}}$ ","D. C\u1ea3 $3$ \u0111\u00e1p \u00e1n tr\u00ean \u0111\u1ec1u \u0111\u00fang "],"hint":"","explain":" <span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> <b> B\u01b0\u1edbc 1: <\/b> T\u00ednh $\\widehat{M_{1}}$ d\u1ef1a v\u00e0o g\u00f3c ngo\u00e0i c\u1ee7a $\\triangle{MNP}$ v\u00e0 $\\widehat{M_{2}}$ d\u1ef1a v\u00e0o tam gi\u00e1c vu\u00f4ng $MHP$ <br\/> <b> B\u01b0\u1edbc 2: <\/b> T\u00ednh $\\widehat{KHP}$ b\u1eb1ng c\u00e1ch ch\u1ec9 ra $HK$ l\u00e0 tia ph\u00e2n gi\u00e1c $\\widehat{MHP}$ <br\/> <b> B\u01b0\u1edbc 3: <\/b> Ch\u1ee9ng minh $MN \/\/ HK$ <br\/><br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span> <br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop7/toan/hinhhoc/bai21/lv3/img\/H7C3B21_K07.png' \/><\/center> <br\/> <br\/> $\\blacktriangleright$ X\u00e9t $\\triangle{KNP}$ c\u00f3 g\u00f3c $\\widehat{MKN}$ l\u00e0 g\u00f3c ngo\u00e0i n\u00ean $ \\widehat{MKN} = \\widehat{N_{2}} + \\widehat{P}$ <br\/> Suy ra $\\widehat{P} = \\widehat{MKN} - \\widehat{N_{2}}$ <br\/> $\\widehat{P} = 45^{o} - \\widehat{N_{2}}$ <br\/> $\\widehat{P} = 45^{o} - \\dfrac{\\widehat{N}}{2}$ <br\/> X\u00e9t $\\triangle{MNP}$ c\u00f3: $\\widehat{M_{1}}$ l\u00e0 g\u00f3c ngo\u00e0i n\u00ean: <br\/> $\\widehat{M_{1}} = \\widehat{N} + \\widehat{P} = \\widehat{N} + (45^{o} - \\dfrac{\\widehat{N}}{2})$ <br\/> $\\Rightarrow$ $\\widehat{M_{1}} = \\dfrac{\\widehat{N}}{2} + 45^{o}$ (1) <br\/> X\u00e9t $\\triangle{MHP}$ vu\u00f4ng t\u1ea1i $H$ c\u00f3: <br\/> $\\widehat{M_{2}} = 90^{o} - \\widehat{P} = 90^{o} - \\left( 45^{o} - \\dfrac{\\widehat{N}}{2} \\right) = 45^{o} + \\dfrac{\\widehat{N}}{2}$ (2) <br\/> T\u1eeb (1) v\u00e0 (2) $\\Rightarrow$ $\\widehat{M_{1}} = \\widehat{M_{2}}$ hay $MP$ l\u00e0 tia ph\u00e2n gi\u00e1c $\\widehat{HMx}$ <br\/> $\\blacktriangleright$ X\u00e9t $\\triangle{MNH}$ c\u00f3 $K$ l\u00e0 giao \u0111i\u1ec3m c\u1ee7a m\u1ed9t tia ph\u00e2n gi\u00e1c ngo\u00e0i t\u1ea1i $M$ v\u00e0 tia ph\u00e2n gi\u00e1c trong g\u00f3c $N$ n\u00ean $HK$ l\u00e0 tia ph\u00e2n gi\u00e1c ngo\u00e0i t\u1ea1i \u0111\u1ec9nh $H$ do \u0111\u00f3 $\\widehat{KHP} = \\dfrac{\\widehat{MHP}}{2} = \\dfrac{90^{o}}{2} = 45^{o}$ <br\/> $\\blacktriangleright$ Ta c\u00f3 $\\widehat{N} = \\widehat{KHP} = 45^{o}$ hai g\u00f3c n\u00e0y \u1edf v\u1ecb tr\u00ed \u0111\u1ed3ng v\u1ecb n\u00ean $MN \/\/ HK$ <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: D <\/span> ","column":2}]}],"id_ques":1948},{"time":24,"part":[{"title":"L\u1ef1a ch\u1ecdn \u0111\u00e1p \u00e1n \u0111\u00fang nh\u1ea5t","title_trans":"","temp":"multiple_choice","correct":[[4]],"list":[{"point":10,"ques":"Cho tam gi\u00e1c $ABC$, tr\u00ean tia \u0111\u1ed1i c\u1ee7a tia $BC$ l\u1ea5y \u0111i\u1ec3m $M$ sao cho $MB = AB$. Tr\u00ean tia \u0111\u1ed1i c\u1ee7a tia $CB$ l\u1ea5y \u0111i\u1ec3m $N$ sao cho $NC = AC$. Qua $M$ k\u1ebb \u0111\u01b0\u1eddng th\u1eb3ng song song v\u1edbi $AB$. Qua $N$ k\u1ebb \u0111\u01b0\u1eddng th\u1eb3ng song song v\u1edbi $AC$. Hai \u0111\u01b0\u1eddng th\u1eb3ng \u0111\u00f3 c\u1eaft nhau t\u1ea1i $P$. Kh\u1eb3ng \u0111\u1ecbnh n\u00e0o sau \u0111\u00e2y sai? ","select":["A. $MA$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{PMB}$ ","B. $NA$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{PNC}$ ","C. $PA$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{MNP}$ ","D. C\u1ea3 $3$ \u0111\u00e1p \u00e1n tr\u00ean \u0111\u1ec1u \u0111\u00fang "],"hint":"","explain":" <span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> <b> B\u01b0\u1edbc 1: <\/b> So s\u00e1nh $\\widehat{M_{1}}$ v\u00e0 $\\widehat{M_{2}}$ <br\/> <b> B\u01b0\u1edbc 2: <\/b> So s\u00e1nh $\\widehat{N_{1}}$ v\u00e0 $\\widehat{N_{2}}$ <br\/> <b> B\u01b0\u1edbc 3: <\/b> D\u1ef1a v\u00e0o t\u00ednh ch\u1ea5t ba \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c trong tam gi\u00e1c \u0111\u1ec3 x\u00e9t \u0111\u00e1p \u00e1n C <br\/><br\/> <span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span> <br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop7/toan/hinhhoc/bai21/lv3/img\/H7C3B21_K08.png' \/><\/center> <br\/> <br\/> $\\blacktriangleright$ $\\triangle{AMB}$ c\u00f3 $AB = MB$ (gt) <br\/> $\\Rightarrow$ $\\triangle{AMB}$ c\u00e2n t\u1ea1i $B$ (\u0111\u1ecbnh ngh\u0129a), suy ra $\\widehat{A_{1}} = \\widehat{M_{1}}$ (t\u00ednh ch\u1ea5t tam gi\u00e1c c\u00e2n) <br\/> M\u1eb7t kh\u00e1c, $\\widehat{A_{1}} = \\widehat{M_{2}}$ (so le trong) <br\/> $\\Rightarrow$ $\\widehat{M_{1}} = \\widehat{M_{2}}$, n\u00ean $MA$ l\u00e0 tia ph\u00e2n gi\u00e1c $\\widehat{PMB}$ <br\/> $\\blacktriangleright$ $\\triangle{ACN}$ c\u00f3 $AC = CN$ (gt) <br\/> $\\Rightarrow$ $\\triangle{ACN}$ c\u00e2n t\u1ea1i $C$, suy ra $\\widehat{A_{2}} = \\widehat{N_{1}}$ (t\u00ednh ch\u1ea5t tam gi\u00e1c c\u00e2n) <br\/> M\u1eb7t kh\u00e1c, $\\widehat{A_{2}} = \\widehat{N_{2}}$ (so le trong) <br\/> $\\Rightarrow$ $\\widehat{N_{1}} = \\widehat{N_{2}}$ n\u00ean $NA$ l\u00e0 tia ph\u00e2n gi\u00e1c $\\widehat{PNC}$ <br\/> $\\blacktriangleright$ X\u00e9t $\\triangle{MNP}$ c\u00f3: <br\/> $MA$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{M}$ <br\/> $NA$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{N}$ <br\/> $\\Rightarrow$ $PA$ l\u00e0 tia ph\u00e2n gi\u00e1c c\u1ee7a $\\widehat{MPN}$ (t\u00ednh ch\u1ea5t ba \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c trong tam gi\u00e1c) <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p \u00e1n \u0111\u00fang l\u00e0: D <\/span> ","column":2}]}],"id_ques":1949},{"time":24,"part":[{"title":"\u0110i\u1ec1n d\u1ea5u th\u00edch h\u1ee3p v\u00e0o ch\u1ed7 tr\u1ed1ng","title_trans":"","temp":"fill_the_blank","correct":[[["BC","CB","BD+DC","BD+CD","DB+CD","DB+DC"]]],"list":[{"point":10,"width":50,"content":"","type_input":"","ques":"Cho tam gi\u00e1c $ABC$ c\u00f3 $\\widehat{A}= 60^{o}$. Ph\u00e2n gi\u00e1c c\u1ee7a g\u00f3c $B$ v\u00e0 g\u00f3c $C$ c\u1eaft c\u1ea1nh $AC$ v\u00e0 $AB$ l\u1ea7n l\u01b0\u1ee3t \u1edf $M$ v\u00e0 $N$. <br\/> Khi \u0111\u00f3: $BN + CM =$ _input_ ","hint":"","explain":"<span class='basic_left'><span class='basic_green'>H\u01b0\u1edbng d\u1eabn:<\/span><br\/> <b> B\u01b0\u1edbc 1: <\/b> Ch\u1ee9ng minh $BN = BD$ b\u1eb1ng c\u00e1ch ch\u1ee9ng minh $\\triangle{NIB} = \\triangle{DIB}$ <br\/> <b> B\u01b0\u1edbc 2: <\/b> Ch\u1ee9ng minh $CM = CD$ b\u1eb1ng c\u00e1ch ch\u1ee9ng minh $\\triangle{MIC} = \\triangle{DIC}$ <br\/> <b> B\u01b0\u1edbc 3: <\/b> So s\u00e1nh $BN + CM$ v\u1edbi $BC$ <br\/><br\/><span class='basic_green'>B\u00e0i gi\u1ea3i:<\/span><br\/> <center><img src='https://www.luyenthi123.com/file/luyenthi123/lop7/toan/hinhhoc/bai21/lv3/img\/H7C3B21_K09.png' \/><\/center> $\\blacktriangleright$ $\\triangle{ABC}$ c\u00f3 $\\widehat{A} = 60^{o}$ n\u00ean: <br\/> $\\widehat{B} + \\widehat{C} = 180^{o} - 60^{o} = 120^{o}$ (t\u1ed5ng ba g\u00f3c trong tam gi\u00e1c $ABC$) <br\/> $\\Rightarrow$ $\\widehat{B_{1}} + \\widehat{C_{1}} = \\dfrac{\\widehat{B} + \\widehat{C}}{2} = \\dfrac{120^{o}}{2} = 60^{o}$ (\u0111\u1ecbnh ngh\u0129a \u0111\u01b0\u1eddng ph\u00e2n gi\u00e1c) <br\/> $\\blacktriangleright$ G\u1ecdi $I$ l\u00e0 giao \u0111i\u1ec3m c\u1ee7a $BM$ v\u00e0 $CN$ ta c\u00f3: <br\/> $\\widehat{BIC} = 180^{o} - (\\widehat{B_{1}} + \\widehat{C_{1}}) = 180^{o} - 60^{o} = 120^{o}$ (t\u1ed5ng ba g\u00f3c trong $\\triangle{BIC}$) <br\/> $\\Rightarrow$ $\\widehat{I_{1}} = \\widehat{I_{4}} = 180^{o} - \\widehat{BIC} = 180^{o} - 120^{o} = 60^{o}$ (c\u00f9ng k\u1ec1 b\u00f9 v\u1edbi $\\widehat{BIC}$) <br\/> K\u1ebb tia ph\u00e2n gi\u00e1c $ID$ c\u1ee7a $\\widehat{BIC}$, ta c\u00f3 $\\widehat{I_{2}} = \\widehat{I_{3}} = \\dfrac{\\widehat{BIC}}{2} = \\dfrac{120^{o}}{2} = 60^{o}$ <br\/> $\\blacktriangleright$ X\u00e9t $\\triangle{NIB}$ v\u00e0 $\\triangle{DIB}$ c\u00f3: <br\/> $\\begin{cases} \\widehat{B_{1}} = \\widehat{B_{2}} (gt) \\\\ BI \\hspace{0,2cm} \\text{chung} \\\\ \\widehat{I_{1}} = \\widehat{I_{2}} = 60^{o} (cmt) \\end{cases}$ <br\/> $\\Rightarrow$ $\\triangle{NIB} = \\triangle{DIB}$ (g.c.g) n\u00ean $BN = BD$ (hai c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng) (1) <br\/> $\\blacktriangleright$ T\u01b0\u01a1ng t\u1ef1, $\\triangle{MIC} = \\triangle{DIC}$ (g.c.g) v\u00ec: <br\/> $\\begin{cases} \\widehat{C_{1}} = \\widehat{C_{2}} (gt) \\\\ IC \\hspace{0,2cm} \\text{chung} \\\\ \\widehat{I_{3}} = \\widehat{I_{4}} = 60^{o} (cmt) \\end{cases}$ <br\/> $\\Rightarrow$ $CM = CD$ (hai c\u1ea1nh t\u01b0\u01a1ng \u1ee9ng) (2) <br\/> T\u1eeb (1) v\u00e0 (2) $\\Rightarrow$ $BN + CM = BD + CD = BC$ <br\/> <span class='basic_pink'> V\u1eady \u0111\u00e1p c\u1ea7n \u0111i\u1ec1n l\u00e0: $BC$ <\/span>"}]}],"id_ques":1950}],"lesson":{"save":0,"level":3}}

Điểm của bạn.

Câu hỏi này theo dạng chọn đáp án đúng, sau khi đọc xong câu hỏi, bạn bấm vào một trong số các đáp án mà chương trình đưa ra bên dưới, sau đó bấm vào nút gửi để kiểm tra đáp án và sẵn sàng chuyển sang câu hỏi kế tiếp

Trả lời đúng trong khoảng thời gian quy định bạn sẽ được + số điểm như sau:
Trong khoảng 1 phút đầu tiên + 5 điểm
Trong khoảng 1 phút -> 2 phút + 4 điểm
Trong khoảng 2 phút -> 3 phút + 3 điểm
Trong khoảng 3 phút -> 4 phút + 2 điểm
Trong khoảng 4 phút -> 5 phút + 1 điểm

Quá 5 phút: không được cộng điểm

Tổng thời gian làm mỗi câu (không giới hạn)

Điểm của bạn.

Bấm vào đây nếu phát hiện có lỗi hoặc muốn gửi góp ý