Mi-li-mét vuông. Bảng đơn vị đo diện tích - Toán lớp 5

Luyện tập mi-li-mét vuông. Bảng đơn vị đo diện tích. Biết tên gọi, kí hiệu, thứ tự, mối quan hệ và cách chuyển đổi từ đơn vị này sang đơn vị khác. Toán lớp 5.

video bài giảng Mi-li-mét vuông. Bảng đơn vị đo diện tích Xem video bài giảng này ở đây!

Bài tập ôn tập lý thuyết

Bài tập luyện tập giúp bạn nắm bắt các kiến thức cơ bản của bài học
0

Điểm xếp hạng (Hệ số x 1)


Thưởng tối đa : 3 hạt dẻ

Bạn phải là thành viên VIP mới được làm bài này! Đăng ký mua thẻ VIP tại đây

Mi-li-mét vuông. Bảng đơn vị đo diện tích

1. Nhận biết đơn vị đo diện tích mi-li-mét vuông

Mi-li-mét vuông là diện tích của hình vuông có cạnh dài 1mm.

Mi-li-mét vuông được viết tắt là  $mm^2$

Hình vuông $1cm^2$  gồm 100 hình vuông $1mm^2$

$1mm^2$  = $100mm^2$

$1mm^2$  = $\frac{1}{100}cm^2$

2. Bảng đơn vị đo diện tích


  \n<title></title> \n<title></title>

Nhận xét:

Trong bảng đơn vị đo diện tích, hai đơn vị đo liền nhau hơn (kém) nhau 100 lần, tức là:

- Đơn vị lớn gấp 100 lần đơn vị bé.

- Đơn vị bé bằng $\frac{1}{100}$ đơn vị lớn.


 3. Một số dạng bài tập đo diện tích

Dạng 1: Đọc hoặc viết các số đo diện tích

Phương pháp:

- Đọc số đo diện tích trước rồi đọc tên đơn vị đo diện tích sau.

- Viết số đo diện tích trước rồi viết kí hiệu tên đơn vị diện tích sau.

Ví dụ:

a) $23mm^2$ được đọc là hai mươi ba mi-li-mét vuông.

$46km^2$ được đọc là bốn mươi sáu ki-lô-mét vuông.

b) Một trăm hai mươi ba xăng-ti-mét vuông được viết là $123cm^2$.

Năm mươi đề-ca-mét vuông được viết là $50dam^2$.

Dạng 2: Chuyển đổi các đơn vị đo diện tích

Phương pháp: Dựa vào nhận xét, trong bảng đơn vị đo diện tích, hai đơn vị liền nhau hơn (kém) nhau 100 lần.

Ví dụ: Điền số thích hợp vào chỗ chấm:

a) $7dm^2$  = ...$cm^2$

Ta có: $1dm^2$ = $100cm^2$

nên  $7dm^2$ = $100cm^2$ x 7 = $700cm^2$.

Vậy  $7dm^2$ = $700cm^2$.

b) $9dam^2$ $9m^2$  = ...$m^2$

$1dam^2$ = $100m^2$ 

nên $9dam^2$  = $900m^2$ 

$9dam^2$ $9m^2$ = $900m^2$ + $9m^2$ = $909m^2$

Vậy $9dam^2$ $9m^2$ = $909m^2$

Dạng 3: Các phép tính với đơn vị đo diện tích:

Phương pháp:

- Khi thực hiện phép tính có kèm theo các đơn vị đo giống nhau, ta thực hiện các phép tính như tính các số tự nhiên.

- Khi thực hiện phép tính có kèm theo các đơn vị đo khác nhau, trước hết ta phải đổi về cùng 1 đơn vị đo sau đó thực hiện tính bình thường.

- Khi nhân hoặc chia một đơn vị đo diện tích với một số, ta nhân hoặc chia số đó với một số như cách thông thường, sau đó thêm đơn vị diện tích vào kết quả.

Ví dụ: Điền số thích hợp vào chỗ chấm:

a) $120cm^2$ + $63cm^2$  = ...$cm^2$

Ta thấy hai số đo đều có đơn vị đo là $cm^2$

120 + 63 = 183

Vậy $120cm^2$ + $63cm^2$ = $183cm^2$

b) $2km^2$  - $99hm^2$ =  ...$hm^2$

$2km^2$  - $99hm^2$ = $200hm^2$ - $99hm^2$ = $101hm^2$ 

Vậy $2km^2$ - $99hm^2$ = $101hm^2$

c) $75dm^2$ x 3 = ...$dm^2$

Ta có 75 x 3 = 225

nên $75dm^2$ x 3 = $225dm^2$

d) 150ha : 6 = ...ha

Ta có 150 : 6 = 25

nên 150ha : 6 = 25ha

Dạng 4: So sánh các đơn vị đo diện tích

Phương pháp:

- Khi so sánh các đơn vị đo giống nhau, ta so sánh tương tự như so sánh hai số tự nhiên.

- Khi so sánh các đơn vị đo khác nhau, trước hết ta phải đổi về cùng 1 đơn vị đo sau đó thực hiện so sánh bình thường.

Ví dụ: Điền dấu thích hợp (< , > , =) vào chỗ chấm:

a) $27dm^2$...$72dm^2$

Hai số đo $27dm^2$  ; $72dm^2$  có cùng đơn vị đo là $dm^2$.

Mà 27 < 72 nên $27dm^2$ <  $72dm^2$

b) $3dam^2$ ... $46m^2$

Ta có $3dam^2$  = $300m^2$

$300m^2$  > $46m^2$.

Vậy  $3dam^2$ > $46m^2$

 

Dạng 5: Toán có lời văn:

Ví dụ: Mảnh vườn thứ nhất có diện tích là $720m^2$ , diện tích mảnh vườn thứ hai bằng $\frac{3}{4}$ diện tích mảnh vườn thứ nhất. Tính diện tích cả hai mảnh vườn đó.

Phương pháp:

- Tính diện tích mảnh vườn thứ hai ta thấy diện tích mảnh vườn thứ nhất nhân với $\frac{3}{4}$.

- Tính diện tích cả hai mảnh vườn ta cộng diện tích hai mảnh vườn lại.

Bài giải:

Diện tích mảnh vườn thứ hai là:

720 x $\frac{3}{4}$ = 540 ( $m^2$ )

Diện tích cả hai mảnh vườn đó là

720 + 540 = 1260 ( $m^2$ )

Đáp số:  $1260m^2$


Học Tin Học