$y’ = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.\left( {1 + {{\tan }^2}3x} \right)$
$y’ = \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.\left( {1 + {{\tan }^2}3x} \right)$
$y’ = \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.\left( {1 + {{\tan }^2}3x} \right).3 $
$y’ = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.\left( {1 + {{\tan }^2}3x} \right).3 $
Hướng dẫn giải (chi tiết)
Đầu tiên áp dụng $({u^\alpha })\'$ với $u = \sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right)$
$y\' = 2\sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right).\left[ {\sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right)} \right]\'$
Sau đó áp dụng $\left( {\sin u} \right)\'$ , với $u = \cos \left( {{{\tan }^4}3x} \right)$
$y\' = 2\sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right).\cos \left( {\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\cos \left( {{{\tan }^4}3x} \right)} \right)\'$
Áp dụng $\left( {\cos u} \right)\'$ , với $\left( {\cos u} \right)\'$
$y\' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).\left( {{{\tan }^4}3x} \right)\'$
Áp dụng $\left( {{u^\alpha }} \right)\'$ với $u = \tan 3x$
$y\' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.\left( {\tan 3x} \right)\'$
$=>y\' = - 3\sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x\left( {1 + {{\tan }^2}3x} \right)$