$\sqrt{10}-3 < m \leq \dfrac{15-\sqrt{29}}{2}$
$\sqrt{10}-1 < m \leq \dfrac{15+\sqrt{29}}{2}$
$\sqrt{10}-1< m \leq \dfrac{15-\sqrt{29}}{2}$
$\sqrt{10}-1< m <\sqrt{10}+1$
Hướng dẫn giải (chi tiết)
Ta có:
$3 \cos 2 x+\sin 2 x+m+1 \neq 0 \quad \forall x \in \mathbb{R}$
$\begin{array}{l}{\Leftrightarrow 3^{2}+1^{2}<(m+1)^{2} \Leftrightarrow m^{2}+2 m-9>0 \Leftrightarrow\left[\begin{array}{l}{m<-1-\sqrt{10}} \\ {m>-1+\sqrt{10}}\end{array}\right.} \\ {\bullet m>-1+\sqrt{10} \Rightarrow 3 \cos 2 x+\sin 2 x+m+1>0, \forall x \in \mathbb{R} }\end{array}$
Nên $\dfrac{4 \sin 2 x+\cos 2 x+17}{3 \cos 2 x+\sin 2 x+m+1} \geq 2 \Leftrightarrow 2 \sin 2 x-5 \cos 2 x \geq 2 m-15$
$\Leftrightarrow-\sqrt{29} \geq 2 m-15 \Leftrightarrow m \leq \dfrac{15-\sqrt{29}}{2}$ $\left( {2\sin 2x - 5\cos 2x \ge - \sqrt {29} \left( {BCS} \right)} \right)$
Suy ra $\sqrt{10}-1< m \leq \dfrac{15-\sqrt{29}}{2}$
$\bullet m<-1-\sqrt{10} \Rightarrow 3 \cos 2 x+\sin 2 x+m+1<0, \forall x \in \mathbb{R}$
Nên $\dfrac{4 \sin 2 x+\cos 2 x+17}{3 \cos 2 x+\sin 2 x+m+1} \geq 2 \Leftrightarrow 2 \sin 2 x-5 \cos 2 x \leq 2 m-15$
$\Leftrightarrow \sqrt{29} \leq 2 m-15 \Leftrightarrow m \geq \dfrac{15+\sqrt{29}}{2}$ (loại)
Vậy $\sqrt{10}-1< m \leq \dfrac{15-\sqrt{29}}{2}$ là những giá trị $m$ cần tìm.