Toán lớp 2 - Sách Kết nối tri thức - Đề kiểm tra 45 phút - Toán lớp 2 - Tháng 4 - Số 2
{"save":1,"level":1,"time":"45","total":20,"point":5,"segment":[{"id":"3418","test_id":"463","question":"<p>\u0110i\u1ec1n d\u1ea5u (<,>, =) vào ô tr\u1ed1ng sau: <\/p><p>857 <input class=\"tim_x input_number\" tpl=\"dien_so\" type=\"text\" \/> 800 + 70<\/p>","options":"","correct":["<"],"answer":"<p>Ta có 800 + 70 = 870<\/p><p>Mà 857 < 870<\/p><p>V\u1eady d\u1ea5u c\u1ea7n \u0111i\u1ec1n vào ô tr\u1ed1ng là: <<\/p>","type":"blank","user_id":"125","test":"2","date":"2022-02-07 10:49:35"},{"id":"3419","test_id":"463","question":"<p><span class=\"svgedit\"><svg height=\"152\" width=\"209\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>\\n<title><\/title>\\n<rect fill=\"#fff\" height=\"154\" id=\"canvas_background\" width=\"211\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>\\n<title><\/title>\\n<image height=\"148\" id=\"svg_1\" width=\"182\" x=\"14\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAALYAAACUCAIAAACx9kRuAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACz6SURBVHhe7Z0HfBTFHsd3r9d0klwSICQEEoL0LgqCUlSKvIf4QIKClaYoWChW5CkqRVGagiBPkSZdECnSCSUklPSeXOol1\/du6\/vf7YIh7SpN78t9wu1suZ3Z3\/zn\/9+dmUUZhkF8+GgaHve\/Dx9N4JOIDwd4raGhGZqiKQaxHY2H8gQ8AZvu437HU4mAMjRYTbmxrKA2v9RYghEWPor6SQLa+LdpHdA6RNZCIVJwm94bQH5zjRSDInEKn4idwiOJqA3q8+rkE0XHszSZGGFGeTwUQe1XwbY2WBbcPbxH\/1YPdw7rLBVK7XvcfYwkM\/OKEeTxZaJCCOfrwxFuSgT2OlV0ck\/27ssVKfBdwBfYxXELYGBwCg+UBA2KHjQ6\/qkIZSS34m7C\/FJifTPdHCREP0uQDQ8Tc8k+msYdicAuuzJ3brm+ucpcKeSJULS5ukgzFMXQPVQ9Xu72auuAaC71LqHGqPGXDFlmmmaQQcGCZYmKUMm94rAXFBRkZWWRFBkdHd0hoQOXWofcvNzsrCw+X5DQISEqMopLvYHFYk1JuaTRVIerVIkdEqVSr5ltdySyN2vXhrQNelwvQJ1qzuEnKIbqFNblzb6zw+XhXOodB\/L5foZpfbEVvoBfLeMjb8VKXo6Gorz7zc3WrVuXLF1So9HAuYhEoklJk2bMmCkW\/2Xk1q37\/ttvv9XpdSjCC1eFv\/322088\/gS3DkHKysrnzXv35MmTiL2+Dhs2bO7ceWFhYdxqz+B\/8MEH3FfnSC1PW3d5ncZczUf5XJITQIxTYSjXWbV9ovrCdy61MUiSPH\/+fG5ubnh4uEDgTY\/yXC2xNB\/TE+Cq2kRhphAtwXT2F4SJXcjI7eDy5ctz3podGxuz8ONP\/v3vsXqjYd3338MF7tKlC7vBtm3b5s2f36\/fgwsXLhwydOjVK2lbtm7p9ECnVq1awVqz2TxjxrRTp04tWPDejOkzQkNDN\/64sba29sEHHwS1sUfwBNfMrJW07srcUaYvtTkfLsLj886UnDlZfII7VhNYrdaNGzcuX75cp9NxSd4Ao+i1hZZyKwMuNYuIj6YZqD3luJWiuY3uEn\/++afRaJr1+hsPPfRQ7969357zdpuYmAMHD0BtgbVwsVd8s6Jr166LFy\/u07vP4EGDFi36b2BAwKZNP7JFtH\/\/\/j8OH\/7kk0WTJk0CVb322muvvjL1l19+uXDhgv3wnuKaRC6VXcyqyULdCgTAn8VpfH\/WPoqmuKQmwDAMaoYbLWAz7KvAk7UkHPLmqcMXWNpWhp+ptV2Ju8i4ceP27d0HImAXFQpFaIsQC4axEjl06FBBQf4LU14ICgpiN0hISBgxYuTx48czMzNpmt64cUNc27ZPPfUUuxZ4duKzqvDwXbt2Qn3jkjzARYmUX6wwlfN57lpmBinUFeTUZHOLTQO1nPvmDdRmaqsar7TS\/FuPCmFYCUZvL7PU4g5U2yhwefLz89OaJjU1Fa6iw+sETWpcXBw0ChRF6\/X6CxfOZ2Vnd+zYUSKRwNrk88l+fn6dOnViN2bp0rUrSVHZOdnVGg04uUOGDKnruKjCVYkdO544ccJoNHJJHuCCRKrN1WqDmr1\/6iYoYqEs59XJ3GJj8Hg8Pp8Pf72okh3l1nNakt\/YAYU8ZE85cVzjjiEBiXz55ZfPPffc800Aln\/u3LmVlZXcDo5IT78+ffq056c83zKq1csvv8ImlpaWqFQRcrmcXWSJUEX4Kf2KgaIiM2bukJjIrbhBdOvoqqoqi8XCLXuACxLRYNW1lprmnc3mgbaGpEm1oZRbtgMNCjin1+ykQyFdv67RaKCVzcjIgCrIpmdnZ7NW1w1S9cTOChyc00abR0g0Ucj3hVgZ5rIhAR0\/88wz8+bNAx00yvz5819++eXAwEBuB0fguFVvMIiEIpmMC1lpisZxXC5XQLVhU1jAZvAFfNyKg52AAqxrQlikMikBReZuodXFhaD3SkXa8uRlxfoiT56\/wM\/1jOj14cCPuWV7XRw7diyogbUcFEWp1WrIW1RUlFAohO1hg9atW4MPGxwczO3jNGaKWZxtXlloEcCxubRbYLMPMfC8ONnUaAn\/rt5vhZxC3QAnY\/78ucOHD1+8+AtITEqaWFhQuH3HjpCQEHYz4NKlS889PykpadLQIUOffPKJjxcuTJqYxK2z886772z++eczZ86qVCouyV1cNQmeupDQTjFI\/Qhi4sSJs2bNet3OtGnTEhMTQRMvvPACmwh\/wZjLZDJuaxdgLtTi28ustgCGS2kcEOcPxZZMsCceZ9AToJKAyRk6dOiQIcPOnUuGlgISY2Ji1GVqsKzsNiz5BfkgpjbRbSDu9fP3P3f2LLfiBmB3YZVbhVYfFyQCga77juoNoJ2S8m85byiX0aNHT5kyZfLkydB+gxri4+MhexMmTIDvkAirwMy4cbuwGqd\/KMbLcZtb2jxQCmVWZmUBZgF74jRg8GbOnNmrabp37w7RSklJCbdDY8C1\/+KLz3fu\/JWiuEYB9CyVSkiKhCYGFgcMGAie6ZkzZ9i1ANjV5HPnggKDoaD8\/f379unz5\/HjFRXl3Gr7jZarV68MGza0ngfjHi5IxF\/s7yfypxn37yKACQGJhMj\/MpgNAWMLRQ9\/nW8BGwV2P15NHKrGRc5lEezM79XgtxLOGxK4lu3bt+\/TNH379oVIhA1MmgKkn5KSsnTp0vy8fDYFoqQ9e\/dGRbVkW5YHH3ywd6\/eS5Z+CYaB3eCPw4e3bts2YsSTEAfBIlQi+72Tb1jPAwKoNWtXkyQ1cuRor9x7dMEXgcu2LHnJ\/py9Yn5zeW4G+C25UPZGnzl9W\/bjkhpgMplmzJhRVla2fv16iAa5VFdhGIhmJ6QYskz1A916sNlnGyLQfh9\/\/vddlIEiWHRkeexAmXDfmsbWzDXb0O3cuXP2nNmq8HCwpnA+W7ZsNZvNy5Yte\/TRR9kNIHgGIwtfxo8fbzAYNm\/e3K59+6VLlkIbBIkEQXz+xefffLNi2LDhPXv0OHr06ImTJxcuXDgpaVI9J9c9XLgBD\/nUWrTpVddxCm8+z80Q4RcxqfPzQr6QW24AZHjPnj3Q0D711FNKpZJLdRGSQdYUYvsrIdDlUprnZnZqCEYpQHsGNnl69bBdfCfgtm4CaC\/atWt3\/fq1w0eOpKWlgWX68MMPH3nkEW61\/cZJ9+49MrMyDx48CIHeoEGD3n\/vvdjYWHYt6KBnz55+SuXhw4ePHTsGpnrB\/AXPjHvGW48vXHuMV4PVfHpqUWrFZfeCGgh6n+8y+V8JY7nlxoBQfs2aNTU1Na+99prz4WI9LmnxZy8Z9U6EsXWtCACuSIKC980DigSlNx8POQn4p3C9b95FrQecKjgusEFTxQJNjFarDQgIaBgDe4LLT3qP5h355uLXRsLo0mM8gGTITi06vz\/gQ4VQ4ZwVdxNwOaelGQ9UE878SD2JwAK4LhMjRR\/FyyFOZhP\/4bjgrrIMaDNweNsnUIQHfiuUr5MQNBEhj5jU5XlbP8XbXPJ7yq3HNAT3w45gd+EWYJFhcJo5WEUcrbZFEz4AlyUCIcnTHcaNajcavkOJ2ptaB5A0GaGIeKHrS4kh9e8Te50KC7Wh2Gq\/l+oU3G52Q8ICxqPYQm+2PdNx58HN3w+XJQIoxcpnH5g4peuLSpGSYrhe740C9ZKiyS5hXd7oPbtfy35wAbgVt431xZarBsrVhwR1Twy+8VH0WDVxuMqFAPhvjMu+yE0omsqsydyVufOCOtlCWmxCuXkke4HzEF6oLHRo2+GDYx4NkTZ3L8RbXNYRs66ZMoy0wHmJcNmv3\/XWSiN9\/flfJMp9HeXdlwgLQREl+uJkdfL1qqtVpiqcxsFNAYejlX+rLmFdO4V1DpIG3QHjwZKiJVL1FDQPLv4elED9PSAJZDYwWNBG7pOIZxKpC9gVcDtAEEK+sGGHeB\/3Kd6UiI+\/Je64qz7+Ufgk4sMBPon4cIBPIj4c4JOIDwf4JOLDAT6J+HCA1yRSZaXLMIq65++ywPlVWegKy10epHkf4TWJbFNbP8g0a6z3etHjFPNlnnlVgdn3iM5JvCORLAO5uwLfVo4frMLpe7rkmZM1xM9q675K4kwNwaX5aBYvSISkmR1l+GU9JUDR1QXWYoy88fj0HoNhtDj9VT6G02iJhfmx2IqR96jNo2nbIDxu4W7j8vwiDTlbSyzJw2oJRMRDNATDR5mHgkVNDH67q6DI2iLL9jICvoCEK3FGJeEl+t1zD3IZhrl8OSU9Pf1mB2bAbDb\/suWXVatX\/f777zRDR7eOrte7PSMjY8U3K\/73v\/+lZ6RHRES43e23IZ5KpBanVxVa\/tSQYntncx6K5JmoPgHCCCnYp3tLJVkGalE2BiKGk4SPgWQwCuntz\/d3cqTNnSI\/P3\/BgvfCwsJvTieh0+mmT5+2evVqMC2FhYWbNv1owbBevXsJhVxP\/WPHjk6aNCk1NZWiyCNHDu\/fv79T585Rkd6ZXM7T0jlTS0IrI6ozGKGWRJbnY4S7JpyiqIsXL546dcoro9pvAh7S6kKsAKNvWjcBDz1dS+6tBHt+DzWLkOtvv\/322J9HBcK\/zNuXS748cvToV8u\/OvT7ocN\/HJ4ze87atWu3bt3KrlWXqme+NrNlq5Z\/HPrj0O9\/7Nq5WyIWz58\/r7z8r\/F5nuCRRMos1LoizEzXP8pZLbWjzM3JTzAM+\/rrrz\/++GOtVssleYNj1fjxGojJ\/7JscM4Qfv2ixi9r3R8+T5Ik0SygeJe6W\/x24LdVq1ZCI3Kzw01WVtaO7duTkiaOHj1aKpUqlcrJk6cMfGTgtq1bS0ttcyxs2LgBzMxnny5u1aoV7NixY8e33n47Iz39yJEj7BE8xP3+IjTNfFdkWZCJCRvIDKrsA0rej1393JiPkB2NBzVg3bp17o\/GuxUtTr1x3bS\/kgCHmku6AQRgU1tL3oqTyZwclVUHuPzQ9ufk5HDLDQCvE7Iwfvz4pobG1AP8iWeeGUeDW62tXfjxJ0lJtsH+X3399dKlS7b88kvPnr3YzYAfflj\/0Ucfr1mzpn\/\/\/oMGPRIZGbVly5abvfusuHXkyJEBAQHff\/e9QuHp1MjuW5FsE7m2yNpoL1E41SwT\/X0Rxi3fbfZWEKdrqEY7woEwNqut58HZdou0tLTjx4+faAJYdeHCBbCL3NbNYjAaP\/r4I4VS+c477\/D5gps9ga9duxoa2qJ1q1vmI42PT5BKJbm5OWVAefngwYPq9v4Ui8QJ8fFX0tLAyeWSPMBNiZC0zUstttCNVj1IhNZnTyVxQety5AZZZScaqZtnT8gxktvLrPZQi0upCyRqcGZdkTtzWcF5vvfeezt2QDvQODt37ly2bJmTtvC779aeOX163ty5baKjmRtDhcHG12g0qnCVSHzL3IdBwUFyhUKj0ZSqS6Gxi4io75nCLkaT8U7PUlSX4xpyXwXezKQMsCrPTG8qxi2O5iOEUiguLs61A848\/AUvxGg05uXlFRQUsOlFRUVg1bkdXIFk6H2VeLKOatgaskAzCwHNHxriIATBLja5IGI\/Pz9oRJoBrH296LRRICT59ptvnp88eeiQobZ5g28AtoRB0YaDy2kKmiN7om1bKML6p07ZB8JxC57hjkSMBP1VHmZs3IJwsOv+qCYOVTkwJJCTadOmDRs27PHHH4e\/Tz311KFDh8A+T5gwYejQoWzilCm2+RG4HVwhVUv9XIqTjIN80gy6utBaCkGwK8UKV+7atWsQfDXFyZMnU1JSHFZlaCs+\/fTTxI4dX3rxJd4NPbHNIg\/lBQcFqcvK6rVWYD8MBmNAYGBkZASEvlCFuBU3UJeWyqSy5uetcBJ3bhz9r9SSZoCm3QFgSCqs9BY10c1fGCltribNmTPHYDBApQTTDc3nypUra2pqZs2a1aJFCzYikMvlbswSYCDobWprrpkSOxqdC81NlpleV2yZFydtdNa8RgGJQOR19OjRptpEOPn4+PiNGze2adOGS2oAHGTFiq+zc3JWrVwFNgm8dTPEiDRzU1iJHRIPHjxYWFRYd0oqCFjMZlNc2ziVKiIsLPzI0SNQzaD02LU4jqdnZEBo45VZilyOaPJM1PMp+kwz43DqHwBMIcogixJkk1qKb1gWB4BEpk+f7o2IhjlShU9JM1rp5sbmsdmHawz\/hQjR9V0U3QKg2jh1qrAvhJ1wUbnlBsAGYrE4MjKymVmU9+7bO2vW62p1GTRJ7C1puMBanVYgEDz99LgvvvxCW6MdOXIERLwffPAhe68MGuJXp07V1tasWbO2ZcuWnyz6ZNXqVTt37Ozevbv9kMjOXTunTZv66X8\/mzDhWfDr2ES3cVUizIIM0w9FttGuTv4ywSAdFLxvH1B08HNq0g5vBb3VVuqVNOOJGtIZKd9kSIjw204KqQuj+TwCzExqairEuuCvsCEMtC\/p6ddXrFgx5l9jpkye0rlzF2gs3n\/\/g7XfrV66ZNngwYPBwKxf\/z1s8MknEBVPgl1ApiNHjQgNDVu+bHlYWBi4bq+\/\/jq4t5t+3OSVuwauSeSEBn\/zmqkQo116k4uVZma1kbwRK5XwHRe9VyQCrtr6YsuCDMzhad7MPhgScBP9BejCeOm\/IrzQhLtNcvK5pKSk999\/\/z\/\/Gc+mgB825605hw793rZtnNViKSkteWHKi2\/MekMm59oR8N7eemsOhDaRUVGFhYUhISFLvlzSs2dPdq2HuPCMxkDSS\/Ow07WkyEXbxUPQbBPVN1DQvEfCQhDErl27wJaOGTPG7VmKck3U3AyzgXLW1LHOBPzBaJv\/9HCw0K+pEOhOgIaFhfbo0RNcMXZZKpWC\/QgNDTUajFFRkdNnTJ84MUl6Y25WICYmpk+fvnD+FEkOGjRowfz54Ihw6zzGBSuytdQyP9OsI8ELcU0iAE4jI8OEX3WUyxzZcGiJN23aBBKBKMbf359LdQWSZuZmmDaV4s5cZDb7N\/1NMCQQA0+PFs9u64W5Bv8eOCuRQjP55jXzUQ0BHj+X5CLgEyzpIBsT4cBvhfMBlcBfcPSaihSa51g1Pu2KSUsyzuxcTyIAQSPtFbwvOsh7OT3j2d8bp8wpSdP7K\/FTtaTEXX0AYEhWFFi0uO1uEJfUGHC1QBzgo7mnD2gNVxdgtc7po1HAzGUZ6e3qe7fD0R3GKYmkG21T\/4ARdl8gtrtASLaJXllwWx\/c2F59d0FPe\/J435ZHFNlXSRy2zcHqwwmJGEn6pxI812yb1wVK3pMPhMpb1HiawQtz1zdKroneVo7rwYTY+5W5\/QFbWY7T20pxtcWdu\/5\/Mxz7IiUY9XG2CZoJuwnxxI4ANvs\/IEiU1Oq2RJV7K6y7y62Ezdo5fZ5s9lnTUQdoDgUI+nJrSY9\/vEfiWCKw3i2v4G8BlM0\/Nu83cO3WmY9\/IE65qz7+yfgk4sMBPon4cIBPIj4c4JOIDwf4JOLDAX\/HoBeyhJsRR+8UdwSDCsSI8G52HLlH8JpErhtIE0V39hO62pvE6zA0RZz4gdGqnb3t1ej9MRLnJzwiSBj4D75vyOEtiTDvZ5hP1BBrOyti7\/ak6QxNWtdPpUuvO3N1bd0BbbePG2xJYIJHXhQOfBH14NXVfw+8k\/8TGuK3KuKSjvqpxHJPzEHDFyJCaCac+NhakyY+Hryx+u+EFySis49FyDNRMgH6k5pI1d2uB7k+7gpekMjRKnxPBSHk2SyylmBW2F6I7H5nHJIkT58+\/ccffzg5FPZ+Bxp6qgmgKOqOw4PvRqPRZDLVTawLjuMGgwH+cstewlNfpMhMzbluOqIhxTfEJkaRxR3YTuTuOHpms3nWrFnl5eVr1qwJCwvjUl3B5otsfI0uy3DKF7Fnv3Ff5OHJwoefv92+SG5u7opvVuRkZ9+cTwaA8wF9yOWKqVOn9u\/fH1KuX7\/+2Wefnjx1SigQPP74EzNmzKg7fAsK7aeff\/r+u+9KS0tjYmOnT58+csTIZgbvuIRH+ado5vdK\/KiGuKkPwMIgqwrxanenToRrBvUA8JIffa8jEAgC\/ANCWrQIDglhPy1CQ3EC\/+3AAYlUwnZkv3L1yvgJ469euzZp0qRRI0fv3r1r5msz8268HRzE9NXXX82d+25c27gZM2YGBwWDRH7c9CPladjP4ZEVydATk9NM+eZb3qgNhxOiyKutxW\/HudOJ3PNxNHfMioDBz87O1ul03HID4OAymSwuLs6lsbUWq\/WTRQt379q1ZvXa3r17Q22ZOHFibl7u5p83t23bFjY4duzoiy+9OGH8hHnz5oPtOXfu7JgxY1544cX333+fx+NZLJY33px15MiR7dt2JCZ64X2V7lsRgmI2lOLZDd64DktgQXaUE1d07vT9hEzy+Xz4C3BJ9yqggK+\/\/vrVV1+F5qBRXnnllY8++qiqqorbwTl+P3jwxw0bX5jyIugDFsEzSz6f\/NrMmaw+gAEDBv77X2P37d\/Pzn6zdu3a4JBgqFdsiYEcp02dDjV1z57dYGDse3iE+1bkhMb6\/GUTxnVYvAX2iKPDhMs7Khy+EBlOAOoiOKdQlSGTYEX++9\/\/VldXf\/jhh2BFwGuDDcRiMRSQk284v5NW5Ny5c3Cq3HID4OBKpbJXr15yubMGtbi4ePz4\/0RFRa5dy00w9N577\/2y5Ze9e\/dCO8JuA+zatev1Wa9\/8cUXgwcN7v9Q\/0cHD166dFndXDw97umqqsqdv+5ybyxSXdySCMMYSGZiiuGclmxqHD3J2EZRfxIvG6Vy8HJyOIHRo0dnZGSwlQDKHVoZ+KtSqUATsBa+R0dH\/\/TTT8HBwewuzXN\/uat1gUo\/e87sAwcO\/PzTzzenS0xKmlhSUrJ167a62U9NvTzpueeSJiY99thjTz75xKJFn06YwI3uZJk3b97Pm386dfJ03fkE3MOt\/Nsnf7qoo5qZZ0GAIpU4DZs504kcDDK0o1BdPvjgg3fffRdKJzY2FuIaWIREWAX+l1fmQbgrOF8Jd+\/ZvWP7jtlvzr6pDzCiJrMpMDiongUFAwOWFSxuTY2GZmg\/v\/ojWwMC\/HGrzevnlj3ADYkwhWZ6fZGFcpRxAWqbtXJfhYOpE6EGDx8+fDyY1\/\/8Z9y4cU8\/\/TS0KZGRkeCCwXdIhFUjRoyQSv8awnqPAJV+2rRp3bt379EEcKXHjh0LNoDboVmgiVm8ePGAgQMgv1wSgoBbBrGrTqsjqVu8CrMZw61WWAVNGBQgZql\/D8lgNPJBVs41zc3jjhVZXYCVWG1jVZoHnBCMQraqcZf8VrZlgb\/OV767BVybBx544OGHH36oCWAVCMgZcUOWwQMzGgzvvvNOPXsZGRFZplabjLfMYqJWq\/V6fUSEqmXLVlKp7NrVq1By3Do7BQX5QUFBEDZzyx7gskROaYiD1cSNYTUOEPKQy3pqT4XjGc\/uR6CKQxO5tGmWL1\/+zjvvhIQ4ftP59u3bDhz4bc6cOfHxCVzSDXr26m0wGlIup3DLdlJSLoHr1q5d+xYtQtu3a3fo0CEM+2u6rLKysqtXrz3Uv79M6oXW2TWJQOuyrshSaqGdnNcFtgJ\/ZbMav+DK9LfQglqt1nvfiniL\/Pz8JUuXgNEZNWp0w1D\/sUcHx8bErl+\/\/mbwnJ6eDhHNwEceiY9vz+OhEycm5eTmbtvGTeYMbNiwobKicvTop7zSOrs2B\/x2teVHNW6hUef7hMCWIA+CQR4OEjgzahxMLpQF+OH9+vVzczY3hqZSDzDGamciGpZGIhqa5LXuym\/dtZFVXsVgMMxfMD8\/v+DzxZ9D4Mal1gHaET9\/v3Xff19YWAgNx7Vr1z777LNqjWb+vPlxcbYwOCYmJv16OmhILpeBA7tl29ZVq1aCDwTSEdW5qe82LgS9RWbytau2TiGuzg8APyDkMcs6KCAAvr3lbef+Cnoh2p8\/f\/6IJ0ckTUpqSo5wkhs3bli5aqVOZ0BRJiIi8u233oZwl1ttn8tq4cKFR48d4fNsdx3B\/Z8z562bM9h4iLMSgchqRT62ONf26MWNMoPwxzbldzdlmIjnfOV2j\/tLIhiGFRUVhYeHO7zHlZmZmZObAw5Qx8SOUVFRXOoNzGbzpUuXNDW2eXy9NVcii7MSSdESM64as0y02\/0O4XdmxUhmx0p9Erm\/cCr\/RpLeXm7N9EAfNlBkU4klw0TBdeFSfNwPOCWR5Fri51JcYJ+c1JNPJY4szTHfifgXbIMXPtzB\/uE4lkgtTm8utd0HUQpQOd\/9jwL+CtDzOvrYHZj9RyRBRDKnPmL2i\/SWRPbjjVuTfwMc+yIanNpfQXjxXXetpbz+wbdxXhcGgt7s04xZ59QZ23MPf+rnj6bQ8HZ8Vfvb7Tnd+7j1pNfHPwmfRO5XSCtRkVVanVeOm3CJvzQ0ThUaF3k7bvT5JHJfUpZedHn7mdK0UkOFjrSSIpnIT+XfumdMlzF9glqFcht5CZ9E7j9yTl3\/c8VvmvwavkAok4t4Aj6BkxaTFXywyK5RA6c\/HpHYmtvUG\/gkcp+hvla074PN2mKDf4jCP0gikvBtD0sZxIqR2mpMrzG06Rvz2JzRAVGOHy87yT\/91uH9hdVkubInuaagNiTCv0WkQqYUCYR8gYAvEPHhe2hLZWB4QN6ZnOw\/r9vu63gJn0TuJ\/QVtdkn0gND\/QJCJIK6L1ywj1wXCvmBLaQyubQgOdtQ1eTQDVfxSeR+wqw14TqL3F8saOJdKCIxXxkoqy3WYFovvH6VxSeR+wnSQkBUK5YKoBUBJ7IhKA8RSfkkjpO4C324msc77ipGmMuMZUarwURiAh5fJpQHSQJD5eH8uzJcimFoUw16a39gl4FikShQiaevynYPCifLM0uqcsosBgtfwPdXBag6tFSGBRan5P765g+RMaFgLeDacVvXAQRkqMUsDDJi4YSQmLDKrNLK3DJjlQHloYogRXjHVkEtW7h678QjicC+Rfqis6VnMqszKk0VJsJkIa18lCcRSAPE\/q38W3cO69w9oqdCdEcLmqFJ\/ODXTE1Ro4VYHzb3DTckcX7n4YLOj9+Om1HNU51XfmHziZKUIn25nrAS4HNIA2QBLYPiBiSEJ7Y8+PFWP6VEKhM2LhEeWlOmC2gf2XlM77zTmQXncowVBsyAwaUSK6QBUYFtH2rfbVx\/qdKF3iTuS8SIm3Zn\/Xqi6ESpvsRMmO0GA8rT9g4H+EczNHwPlATGB8ePiBvVTdW9Ya\/M24Stv8gP05ydpciWe6YRHeDsLEUv3Mn+InAupVcK\/vh8Z1VWtUAk8AuSS+VCPh+hCNpkwAiK9osKtOrNAgoJDlfCmdtfP8yeOWN\/d4btelYUagSBcjhtU5lOphCLZSIoeZKkjTqLQWPi8dHofrFD3h6jCPGz7+gYNyVSZlB\/e+GbK5VpGInxUX5TVc02OB1FAsVBYxOefrL9CBHfO9MZNM\/926VIV16z480fNPm1MqU0OFwOpgKsApwanCJDI1YLUVuh15TXKANkrdpH8RCjCCkR86v5fIIkJTgViqNRBCkoTC8mCDq0ZYhfoAxCYtvudjWBSgx6q7bSDJFz\/JCEoXPHiqQOBkqyuNa9mUWtV396etHV6is0TfNBlk1fCR7Kg4+ZNF+tuiLmidoFt4ftuXVNgGHY0qVLd+\/e7eQIlEa4r7o31+XEqt8KzhZI5JIQlUKqEMFP2xVsOwE4C\/vNDymK8jG9NiwwPS7hfJt+ta368lWdUVWiIahFhpjIrCzADEZFeHS4f7CMf+N9pnAMOBSPz5NIBWBuCBIpzypVdYgMbu3UrXqXq4iJMK68uCK7JosHAnCu+MDMEBTxv6ubThYf55KaBmSXnp6elpbmlcGG9xEWI1Z0MY8nEMiUYmhfGilZBoGrHqri9eqb02N0WfQTnQLie4pD40Uh7SThnYO79I99MrTPk2mduxYp\/GyS4PaqA6Qqg8RiiUDAF2ceTgNvgFvRLC5LZFfmrrTKNFC3S8COVsq6MXWD2qhmj9MMkBOAW3ALMKxOYtu4sa3t4wEbcwhvhZ1uqhnYmQ24rZuFwKyE2dYvR64Qwg\/bft+2J\/e\/Hfg9rEXgxYSh1oCOPRBBIJwgNEC2D2yHSniKhNDeifH9MvykV2kafpfbGQ7OfgHA+RWJwJTz9WVa2rmX\/7nmixRqC6GJya3JEfLd7BM0PPbx6b1mcguNcR9NQQOXf+PGjewkH40CFjE0NDQpKcmZOQ2M1bpNU1bieiK8tb8UVGK\/LHB6f50bg0gF2Qm9zoX268aggZx\/egsouByMKa3oSHVuxjAcUaGoTQR1DwL\/V5WZdBosvEOLscte5IscvznZNSuSXHIG4heBu7NNwrleKD9fg9Vwy40hEAiEQnDjbXBJ9yqQnfz8\/CtNA81ldna21epg4DuLUCoWyUVgEgiCalzajDXAPycoPgBBA22moxEYFBHyJBEhcVa5oghhSJAEt+YG0LZAfERTZEBUCK+x1qwhLlgRjMC+PPP50cIjEoGbg4nB8on54le7TR3SdhiXZK9qa9asqaiosLUuKGqxWH777Tej0Thq1Ch\/f39YC2cYFBQ0efJkJydyuWNWBPYF55ogmuuKC0IHp9sZucN5HPpix9VfLyuCFeFRCvaU4CdunBvKZ3SxcXtinohBhG0YhmrknG3wENpE685e36MsLR\/K8OBKwTG4g8Afq4WsLDHqNdp\/fZnU9mGnprlywYpUmMqrsCrwPblltyBoIqs2i1u4wYULF44dO\/annZMnT5aVlWk0mjNnzrCJ8Pf8+fNO1sU7CZS7TCYDHTeDQqFw0hzCNezyVF9RgNBisJr04KrXr7ooj5D6ESgPItVmajX4JwKeUCCSGFC0\/v1lqG4GrdWkM7fuGRPVJYZLdYQLVuRa5dVlyUuLdIVuNzQAGJI+kX3fe\/ivSBtOoKqqiq2LPB4P7MeCBQsqKyuXLFmiUqnA44N0aH1CQkKcLOs7aUVSUlJqappsN2EDkEiXLl2cjN6hcK7tv3Bw0U6RRNZCJZf7ieDkbrwtFKqmpkOXnZED2jPCWKRJK4IilIExJ2f9JigsHEmjYHfhLMCKQLEwuhprVWmtNFg2+r8TVB1acXs4wgWJpFWkLk9eWuKBLwLAz\/WM6PnhwIXccgPMZvPMmTPBkIC7eo\/PuwrynTBhAhi5Jq6WbYP27dtv2rSp7hypzQMBUvafV48s3YtpLX6BCplCKBRD1eBRELYQuoQO+xJG+TPSnrBlEz\/KQ\/AiUnsp5deoEvVAvlgKxUGRjBUjTXqrvkav6hDx6JujVR2d1QfggkSuVFz5CqyIvshDifSK7P3BgI+45QbcX5NqlpSUgKabOgiki8XiyMhI+MslOYeuvDbj98v5ZzN05TqapGiCMtUYeLS1W6\/cXuPKxaoeDD\/MPvCtHhADW1Brqi6r8PjWrhlXW4gVMlmAEuGjIqkwsFVI+8GdYvt3kChcuyHpgkRyanOWn1uSqckU8twfBQNm89GYx17v\/Qa33ACQyNSpU0EiGzZsuMclcruBc2NoWqvWXN2TnH\/sitJPLpdUxiXujXpQiUi7oIJAW3H+5ZegDGVByRxKm553PKSgYJjeIMGs1k7\/6g\/KkAUpIY+NZNMJXMh\/mDw0WBriyZzA0Nby+YJo\/0Zm0bgJZMPPzy8gIOCOPfa7Z4GiMFbpkzceLfjzamCQUigWWanw4pzumms1iPkCShYglA6hrRAMM5SZIct5xBVaf70sVawu6U4igXI\/cKXll348mrrjLGkl3NMH4MJlUIr8YgJixQIxXGkuyVUYRClQ9IywzTjbFEKh8NlnnwVDAkLhkv6pWAzY2R8Ol1\/M9Q9UojZXnUF5Ap2pU\/b5nuUXMKs6GbGc4xEpPDyVR1xETWdNxdmF5\/zzrj9kJmLtgmCEYmFQeMCVnecu\/XKKO6jruFZTe0X0ipBHkLQtynCPxNCOkcpIbqExQCK9e\/ceMGCAm1MU\/Y3IPHal+Fy2X4Cc\/1c3VQblS7Tm7hkpj2UcSyg6QVdcLNak5Vecr8g\/oUj\/s3vu9SEmPB6UZKuOts0RkUToFyC7sudC4fls+xFcxjWJxIck9IjoKeJDMOaOIQE79O8OT3NBnI9mMWn0eafSEYoWycS3uos0whdgVKxaPSDryuMXjj5+eMuD15JHZV8bVqnpR\/Ai7ZOM3bKDVCGx6syZR65wyy7iYnuPImMS\/h0b0NZ5J7cuYzs8HRf41yzVPpqhuqCyKrNCLGvElIIEbA9fBBICVWn1kWXqUDPZmoIYhy9CQUD1YBAeDxUJBZrCap26uUcfTeGiRBAkVB76UreXVXIVbXuW7JRQbJ45wwyLHT487nGfCXESqwmzGLGGJqEODIqQuMViMZlpmkCRJuf2saXyeLjRgulumbzVSVyWCJDYouObfee0CYjhITyKae5hN43QEAEJeaIn241M6vycXOjO60f+maD2jp4kQTdjrykKwUxWP1UQZmrkhj0HGBaKwTGSx+fzhO48PHFHIvCr4HXOf+i9QW0GB0uDwZbgFA5asdkVW08LmmYocGkJCheiwpiAmJe6vzy56xR\/saevNHAB2iZOjz5Q\/G41pt7CL9TfL9zPWGsmcFvnzobAyRm1FlTI6z3pEb3GCIXOragHg1gtFChJHiRXtgjgEl3BnY6JLEqxEgKcmMAY8F75PAFqs4k2qyjkCeUieYgspF1Qe9DQpM6Tu6m6e3JD1mUYmso6heAYKpKhImnzH4T70mBLgYjXuhu\/5QNu307wEIlSCu5I4cVCkUQsltTv\/wnfrRhZnl8d\/1inbmP755xJN2vMUoUY3A5uC\/s28MEtpKbMSFJ0wtAHYvq259a5ggt3V5sCjlBpqizUFdRitRiJ8VAeRC6h8hbRAW1AK9xGdxDbLEWFqYjFwC27B03xWkTDx2Yz7xIFF7MOfLTdXG0JVvnJlCIRCIWHgrUA+2wxk1UlWmmwdNSiCeEJLTOOpB74aJvST+EfIhOJbXqCq0rRtNVE6mosuipDREfVEx8+ExDl1Nta6uEFifi4faT8evrY8gMERiuCFLZrb38wg1sIfaVeGeE3+PUn2j3SEbwWiqQubj5+6rujKIkog5V8IQ8uK0XRFhNpqjX6Rykfmz06tn\/92eWdxCeRexrSSuScuHZpy5nCi3mUlQI10BQlD1bEDUzoPLp3VKdonoDzQEmchC1TdyYXns\/FDTjKt20p9ZfE9I\/vMe7BVt25l6a5gU8i9zpwffSVtboSjanaSOC4WCEFTzawVbBEWb8Rh0jBVGvQFmuMlTrcgotkYgVsGRUiD\/JoNKRPIvcXcLGc9I2c39IBbgW9Pu4azl91r3nZPon4cIBPIj4c4JOIDwf4JOLDAT6J+HCATyI+HOCTiA8H+CTiwwE+ifhwgE8iPhzgk4gPB\/gk4sMBPon4cIBPIj4c4JOIj2ZBkP8Dxb9+9bPVcRwAAAAASUVORK5CYII=\" y=\"7\"><\/image> <\/g> <\/svg><\/span><\/p><p>S\u1ed1 nào b\u1ecb bông hoa che m\u1ea5t? <\/p>","options":["400","500","600","800"],"correct":"3","answer":"<p>Nhìn vào dòng 2 thì m\u1ed7i hình tam giác s\u1ebd \u1ee9ng v\u1edbi s\u1ed1 200<\/p><p>Nhìn vào dòng 1 thì m\u1ed7i hình tròn \u1ee9ng v\u1edbi s\u1ed1 100 (vì 300 - 200 = 100)<\/p><p>Nhìn vào dòng 3 thì m\u1ed7i hình vuông \u1ee9ng v\u1edbi s\u1ed1 500 (vì 700 - 200 = 500)<\/p><p>V\u1eady hình tròn + hình vuông = 100 + 500 = 600<\/p><p>\u0110áp án c\u1ea7n ch\u1ecdn là: 600<\/p>","type":"choose","user_id":"125","test":"2","date":"2022-02-07 10:55:38"}]}