Toán lớp 12 - Đề kiểm tra 45 phút - Toán lớp 12 - Tháng 10 - Số 1
{"save":1,"level":1,"time":"45","total":20,"point":5,"segment":[{"id":"368","test_id":"247","question":"<p> Cho hàm s\u1ed1 <span class=\"math-tex\">$y=f\\left( x \\right)$<\/span> có b\u1ea3ng bi\u1ebfn thiên nh\u01b0 hình v\u1ebd bên.<\/p><p>Hàm s\u1ed1 \u0111ã cho \u0111\u1ed3ng bi\u1ebfn trên kho\u1ea3ng nào trong các kho\u1ea3ng sau ?<\/p><p><span class=\"svgedit\"><svg height=\"300\" width=\"400\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g>\\n<title><\/title>\\n<rect fill=\"#fff\" height=\"302\" id=\"canvas_background\" width=\"402\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g>\\n<title><\/title>\\n<image height=\"306\" id=\"svg_1\" stroke=\"null\" width=\"406.00001\" x=\"-9.49999\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAAkcAAADNCAMAAACFKSRSAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAACZUExURf\/\/\/\/fv9+bv797e3s7Fzr29vbWtta2tpaWlnJScnIyUlIyEjHtze2tja+\/O3t7m3nuEa3uEhHNza1paUlpjY0pCSjExOjEpMSEhIRAZGSkICBAICAAAAAAIAEpSUkJCOikhKSkhCClSQs7Wzvfv3ub39\/f39+b\/\/8W9nMW9xd7F3u\/O92tjUmtKUs7F5gAICBkIKcXmtQAAAIK+8HoAAAAzdFJOU\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/AHGevY4AAAAJcEhZcwAAFxEAABcRAcom8z8AACHHSURBVHhe7Z2Ldqo6EEAlgLyrlYJG06pVD6Wtpff\/f+5OQsQXaASiaNkQSHvW6pE4TGYmyaTT0tLS0tLS0tLS0tLS0tLS0tLSco8oKBc1Fy0XPZeukYdp5WE7Obgcz+If9dagvKOg\/Z5Q77j0eDMeoOUdtFVzCm\/GPbr5jeo4fXo+790cd+ANPPeo+P5LzhkcEG4YhqND8DjnwBNC8NF5IzDiX+QJdMexbNty4LD7jktbbf9y3HS0eNBY0Fy0zbaH\/8abbZ8pb8N9oAXnaUPu3vAk57hdC14DeL4jJpg1yQHDURhO4Ti88HY+wN\/\/ctLD9+DrOy7uc\/\/4tB2bnh4ZKlxYikEj\/jSygfdrr0DzwUHh9\/SG57QZ4X3cLePcVh2NQmjYo3MavAfHhUk8bcmAtWZ6+i85TQpvSf8Z3iB3v\/QdG9T\/4WFbXLUdADpwD20BsMuC69ItS1V96j3Rsrn2ntBTpIDG3j8QqIUo6sBxcKFfJL0clnr4IAGvnWJKAnfAj2cHtDjV4dkVTgc0PTThXrEs04TWCkgAHe7OaejQgl3oRPausQZHfFCgUT9ZKy6+etrXove1+KRXFS2\/lmkPtwP\/rC2oo4BBpQDbiyK5ebok5LUToIAYvHo5LnF4reVxMcg7r52imhy5vNbyuBhkymunmFaQo0ErR38AgwTn7WzQR+WjA60c\/QW6ZMZrJ6hkH7Vy9BcAfcRrp2j10SUsdF2689jTdY1XG4FBhgLPXE0f9XntxlwpMKAHnuMFcp9Z83zXm46aMhQBxGTIa6eooo+a4a\/prr8OPJ3\/JBGL2HBd4kCi2OoBfZBVQNZXejfOEwuNi1SRo2fi8drtQK6n91Z6SLz6Irj5xPxpdYlvTw\/7C3rXSf2hOb3kX9SF9JHPXrJyOA2Qo\/6sR29LLP2z+ITrvBlR00r9aJtBUUxG7Bc14iS8ciE6GQnoI7+CPuo3QI4wwUt6D4W0bwXUZMLF57tCk50BzYlP78tEyEm6CLukZIIc8dop\/AoKtAn6KCQkpvdvQp7YL2RhkBHTfNS9YN+1FFCXvQ2gl2o3562ScqQRLBCHrKKPmmAfaR7zN9FMZDSxCk72HzgE85o0BvV3ax3n0MxB9tr3rEyLI9PzfYe\/KzuI2kdn9NEJ81VAH8W2uRtxiW3blKI2fpIKdp4QLpnyB7HIWG4XCl9dyJRsrVgH0q8FyfuMkDH\/\/j\/C2bNpesxf3AP8tRWvnqBIHyHLdQerjuoMnMIA01n7SB+RMSEji+tFMwzXnh+Y6U+14ktXjX5msVgESzO0qZZw\/ETGwxzYRyqmbifyCPHpW+Em6deiB8xh3KGSPkIDZ6GFQ21gfvqFkcpz+kgfu1pPg08asnb3sEMFW3urWXOose5jaabvBp+EmT4iEgPOivns+FMJytX85ZWUb\/69w9PAC+KkViagHwZQNPIroH4L9BGzOnQyN+BSaEGdsY\/UMNWRXUxmIEg+5pLe8+t9nW0\/GPvShxK2+sghieR+reORoHaVt6+P4jdegcchnrGJaQDeQVNSffSP14vJ10cmExCdGpSLsDB+e0YfOZt4XUzIDPWTzDAyaw\/kRZ70ALC3o482EQB5JHX5hMgej4Z0ZvdsPglDuM2GOADdY2y\/dp+QZOcbsQ7sjpjMz4tRgT5ymXieG\/fY2EfxoO+CHeVmp2uCbkRe1tOa0LX9fvAf6L8IGG6HmGCvOV6f\/n1+3XtvQonOOMPd8dfmvCYP+G4LzdLLMAau23eh8QI8gEajNeqU2VsFpLwTsv1yOvqBQIDRLzBUkK+P0jfv3BjuRh\/pwxEejfB8hMM5DqGerJVO9DXYagiX7E6qQ06J99lNQjyHP775X+Z4770B7Zxr6NWGReb8Uw9EJuSUQ7X5Q8Hj1K20jb1+bVfraKCQti+lfqCPKsePECGnBfG0v7ZwdnqacPf9isrIUQEa\/1MGMxclomdWkXe6O68AGhJuqPQJGbBKfezbR92dt87HmIRZF+EeyJEu9NqciB\/F5ybmnraPVu6OtIAcZR5BJ1qzoYw6sDH3V+nIFKtIY7R5gLCuLucYTHgYDJzcutXrfjy7t3XL7OTzY\/sWokPHH+yjCvEjgE9TQ4Wu0Bl\/LTWyGEEYJ9vhvo\/6TJmAcLsITDC5+ghURNpSy8zgrp\/p2E6\/3t\/6hwsP4keDTWjBocaRzcNInc76sD+l+uh8x5avj1QqOyFhr7pTGMuwSOY85qFnUjZIFh1twrx\/IAq67F4HAzJKlcPz5k2WR5iGsb0dH7lutFn6t+GtqF3nHYyvRWtmd6g+Zv+TlZCZpap68H7onMXkV8jOztFHJkmW1L6inrpaHO2xz\/hIg1S0VT+hf8IAjfQBnyie1mheaKO04REmgcDTVkIN32Okurj+IYsteuBZse4QHnqrE3s\/Dgk9W+ANfOzxcMwPuIg4mRy70joZCvn9Ofrom8xQZzClLx7yi5WHdc7XHrzZXdPFb+lH\/YJP+huE9Qb9jamjIRBVEtRmcxVjemvmNEuEjZb6ZonAyDnMfX0EaLZj7Yx2qoZpHg6KABXsIx27hmd3\/MBwvAPrfRfnbMzG9N78web9jegUWN+r+XX+GQR+EEoZtHssnCM5EmMhFC7Lt48iw6AWkm6Yp96+s\/roOqzUxRV00d2j7sQaL0EVGgY64a+d5Zx91PIIqEIBFa9C3NSS7Wq3XA1qSoN3z85\/nX+rzr9NorMf6nSdxasQ72pIvybGppF2T5oW7p+yOig7KYd2DwAuB2nknlgKo0NiTc85dd3MO+ztYaSHaZo0K1wOnjsYuF7f2y\/eOu8Ec30fmvHpKFMcmJZQprNw74Cfw3A8+h2NfodzMoHGOsfuWkblH9octInZwdpNXR4W1lwOCdg9Q1vEi\/3yA0XX4IBWjFmF5tmD1usacH4YNrTZXnFsB86DiwOt1R\/w02EXqHqMTf6rDazJjoDmCoP3nSs9guloONuHjo3jeTKmZZTAhdcnY0zTf00SmgWMHvx8ZPArPOgrrX1xATnBCxmBPL5Pg1kwnY3C2ZDK4iyEBoYrrdD8hccFJ5jQHIYJVLYH++8fBNqArwnIDb29wk8T+sATeGw4oM4KxnNojLRJNlf4zSgcHh\/Dwvx7LDVcKu8UnimO5qM8OAZ957nvsAtNu8hvfarKaHY4i9\/TK0sMl9JlZ3rfy3MGwJWmOqO5zuD4T9vUaKazRW+p9XSSROcDSB5tqFNMaLZCKOwODTfBCc3BB81FX1G4bI\/5CBprBCe7bO8si2F6sDNtP5ZMctNsvKTpC2mb7V022fXY7blPK3Bz7Dws07DgMPdvaZttiNkBaAsNlOjn3vWz9xU9RSpaoi84kAJVRY2eVuAYQk9ITyUCNc06xZWiQPeosEnsm6tAJ3BX9PjKrtN45IU1LeWTdkM\/GpyLT+iSQDShqAv1iZ7oZ\/H0iWhF\/Vo8PUHDIotMEYqg34N2X8FvvqIIdSJo5ezKyn1DxeLRROMiwF8TeP4qdvZxRpN\/0OS0pLXsh5Y7RiVEIH7kiS64046H\/cUy47TcN2Lz2Aai+ggfD3Mb2ZKuP4IJbqIlN3au0VTBn\/yHRgD9mpB9JKaPTHKcHcH8W\/oIBYGp6Z7U8X4XW1r8jGVPgbmEBfhrvHoCjzzz2mncnDlr0K81QR+p6nU+RZCOMw22EzvFQWKf0U3\/drfCYFXtqELLhwXtbDTLmb3VCPvI9l3Xd+VO5mA46bS+DiJTgfk4B5hCSwPizQDBTP7KJmHAPhKQI8Ecj4u8udpNsI98HEedyB\/L7GxSRptVtEGJCZGm0DRZb6OHnApedN2IjfcL6iMnr+0aME7LO4JOOJIdp9LJnDdnmaFtS2QODxpvWrlJI+ALMhayj4Ts7CDvfarbPkIXKxV1sybGrH251yFmtk6hX2L9miFiY2ivG5Vn5Hg1twL8NYHPLmZn93INv7rto8HFfy7rlWN5axM5bvawdon1tELJ0LZL5PQGyZFo\/EjkRbZGeSGEuu0j9+JUWMGmV15MShgtF7G7vl\/EYNjHEMmxuE2Io23WQzYAsI8qzT\/afXAvV9jq7sVdkQ1RdkEJ96E6Kpa3ODFlm2\/EJhOBiRT7HCSNycfJ5Aj0keTHEUfMXyuyj5au56cTeleO3smPftStj\/qX9k1R1twolL18bS\/\/0cWGnD7mlVM42TL7T+np5cRBZCIkR7n6CPlGL0z76OJZj3XbR\/1L+7V4K0cj2YY26CMeNoLuRzRcpW9m+bgJu1GKvxSHjHkPIq6PEJ0XuE+t7zZdPywyTltgHzkgXTxh9Lqw59PpMrcaqSJHobTkDZzBrj4SfWyXTeFK4CCYXoBxseFjkISvHwP76HhYPJcVzZywR1KzZYWEMgG7uXkt1CDqqAnrrVe48JG6ZFjrej3n0n5t+9oux7Xn5zhgm\/\/IFU8mSydnKU\/RcmljZak8rRBanWgxneCftJY3mlnAaonon91c0VKpeabO2bQzjPzcMzr0znwUVnstDH2IZXoXx75UH8Fry+UoCsX6Nd2nm3zvlMAWfASDjPlX65Xozj+wwIQ+NctnZRK2lL0UdU\/4UggR8NeeC9\/jMO3WrOIOg2YOrP6pUWyyPZINPRjphtmFwxDs46Hr5nL0hMWGNk06mZdO7N2UoKjTPuSHYD6d40Sqn0IsEX8NOme+CP78SuXrIWYfFeaeUfk4wHex51CTPvKo8YAnbJkAplPAk01mknNEmVuzxJsIgDSyYbV5iXS1xmZQ5STOxnmusjq1blZC60Xy7SOgn3YUKCmWRtBHUQ1aNGLbh6+UyA07CEUK3VxckGDTm4HFffmXexk6+eb3Eha9LZTkS01SywslF0dk5UHto\/NfSGFuPp42+\/PEqlzw12rtjPsiCb\/3yDLCiW2mUg2HKb8nXCZo9jESaimNbf+F\/HFO3o9bUc0+QtxNs0+8fTXpo4yjHTDOkq09718jbmcFA9t5KxWnErKPAD1YW\/b6pVY3uCIV7aOQsHfi1L7soI8EJFWci+NHVEcws0iZD2XPG6Eg3TTKzZgzReZeMDTLaJAyAqBfE\/iWC+0jhwoQ8k6NSYplVhbn4vgR4CXgKsdBvQHR+unWG\/m\/Jl9C+qg4d7EXOrbrnRpC07M4fj1cbh8B3bcXb8CzczaYxn\/AIv5FQv5acfyIbjIO6uqEOQD6qN54djkvRUF3+yXdA2AfCazvL7CPVnSADd4ifCo+X3c825Xvc7VcTCX7yEnjMadXSYI+qtXvT3fHaWkWIEfl7aNvllVWPx2ep+P9tQpSSwOpFD8yv3sd5IxPrwGg42stj061+JHu+Z57ZqiB6qNaDaSW5hGBPqoyvibgqbb66C9QZf6RGNRfa+0jmawQovPTslIAT895gPYDhd73ipYLy053CMvgqXcF7aNS40UM8Nd4rUnwtj0A2jCHONbjnGLSVKhHJ02Eyk5rp9g0Eeqz4zzbznNWsZ1vx8vKwHXhTndlfHG9tet9H1zffDi9gF3pGQTvQVr8cLoLzeDJcsjOZ\/vX8SvNs4jxeKfME5YitBYEplI8E3+hLXhySS6HjHT+OE3Wa8BhHhbbsiyXjOFmQ1Py03H6g\/7AgRYbQM2hF3r79gZrzzu8shmJRydNI3t8zkZwzHYL\/GKIk\/H2fKXXhBY4X8eHFzpLOuXwfldMXic02Wl2fYWDpvBMk3iya1YZ5RPS3WrTPWu3190cnpsjeKM5PN8CoeUx6Uz0O+b4rYOGpTPjWGJizGvQqmPesLv3ME0kOxxOeYpZeo4CePPf6WXvBmKewwtPt7zPwO0\/gwI6KCyN89Fh2jQVqmXSiwE3k6eXZcllD\/iEV37voCk9e73eUkXqV0+FW48lpaY\/K8qqg+AEBU0vymqlwMG\/9ks4MQNti0Nw2nzhiAphAJr0Pb3zG7TfG+iJw0JbyyeE3be4eYC+zznSRqNNmF7hTummiXgPzpi211FRVYW23NMKzi8VLVdPCH6KEBzL1ReKVquvZfQULb8iZanAb9Mc6tGK3+HniHoT9KSWJK+yGktDC1Waj5bd6K\/\/KHMRfVRlJvDiCpPHznDm6z03LsRS+m+mX7LXNq22bEE4nUF0mip7zXyS0RXyV7XcFqV44dkODnnhtcuJifSsQy03B41F1tJV0UeLCdt5tOWxSWTrI43M2zCkHFBzXlD59pGaiGTGabkYxUguX2opi2gsIkfZyp0SaI2xj+K3mpMj3BDz2QvkbyIvDkqk20dkXnoVen0sdNNrULqgyjiu+ZPlmWsAoI+E7KPycgT6qAHxFi\/wbenZ2K7MtEn66OTc6g1V9NEPLp8Voz6oKI8eS46i6R3qoyr+WkPso+XvY8mR\/CyFFwD2kWR\/rTHxo2guPdvIdWmSPhLLr\/IQ8SPowh\/HXwOU2d\/y15J5M5aiK6NWH0lDbHytihw1xj4CfcQTmT0GqFH+mlAcsspefM3w1yitPpKIkD6qkpM\/JmLZoaSzbPWRPMTsoyr6aDFJmuGvoUfTR02KZ4OyF3BiLPLGa5fTGPtI\/X0wfdQof20oIkdV9NGyKfbRqrWPJCIkR1XsI5VMmjFvBM0fSx8pjYpn\/4rIUZW9ZsDdvnjjHykojzZOGzRIjv7xhPynqWIfqQleNsJAAjv7cfQRQkgfE2\/ZlBQcq7yt0o+oYh89Cc0ouALKqEkb3lfECoIRxsks8Buh7BX59lEv27\/wltjeGhOSfHvuYyw+e1r0ll\/\/VkhVm+EM\/xMavDQq5HpYNkIf6bZldg3DskR3LroDmiFBHKF+rVtBjhbJpBn9WotEkJAcfZTf01EBN6mVo0dnJWYfdcmlm1RvURthH7XIBbSFkByV31LhCU8ERoJb7hwhfVTFzu4lkzZPxMOjCOWt0SvsVfzV2kd\/AaF4tlHBPuq9tvro8RHz16rYR71WH\/0FTm3Bl1HFPlLb+NEfAAnJkU7C0vqoGfHskzxIiPumjxGI6aMK8aOm6yO0nj6EwnwK\/E9evT7\/QhE5qmIfqTfRR6op\/J+ikOC7mJikmidd6wUhr7cbPRTURxXsI3x9faS6l6SYUn3SpBmqBcTuuSRUWkDIraaRiNpHw7KCrihCK1LqRPOSC9dt2oQEzVj0WwDSQdbPzyV0MLwRt1FJ0vWRWGac+qAtfvEW3fGc\/ArEP25EPBjRZ+I\/nWIBDx\/eYhgKCcmRRnD5ufrja87PZlJELh\/RizxCBjd1eIpAOqhXAIu1ojEn5PsGDyIkR1X2KhZbaVkLyAQLgSLwSEf0oW+7uiF3loUzTR9pIqouVXgjZh\/8h6shZh+BPiotR6uRyMrv6qAvc5Y2eclNvrQZeW3YAjfdzfZbumBqeQy9oHdtcy8Q+YQV7GzBTBSVUamNmTItOeG0B9rsRlZqHguLa1fKRfmCkUvIuIxOroAvIkc\/ZFzePkquYB\/FbiZFBJdXf1aT\/LbdzcouTRsUgwi+XbWX9kUW0+kEl55UjuZX0EcOb29KFamFLmHclL5N274al49KRdAjJtdcZiWkj6rkLlYw+eFViYBxySm\/Aypl9QJ\/oSF922IjSPMyGpb20sH1PGVfJJRbyV\/7vYp9xPx9oPxCOw6NSTbEb9vYRyWlwRpf0d4TsrOrxI+iq8SPIi5HNawp+JmTRmzcsQjTRyo\/ZtMDLR1cKbwq1K9VmTdyFX8tDglmvUAdI949kMnb9212QkYfVCMN+C\/KQKOS1wmvCtpHFeLZQjtzVaM7JyNNBTVeUwIOMNuvaFrkEC1BlfhfNLdFtY5aAa9vdA3PQdA+Kj9v5Ar+GrSVD5+vWyGr7gHgtyVXDsDs0cVkwt4JPaiqTXToHl35Bp90+6gj219D8OqmTlq3vuZaQd+2vlnfBvowrE0fruCvYemZkqrbR2daW7Z9FM9IIkNxQ+tPb9O30UF7r04Z1qagsCWrJFH7qCjnrOq43+lHRHb+R5UbzwbTaC5H32mj22yUp\/\/W36eC0Z7IDQGIxo8K4tmab2h88MfLl0i584+oOSorfwv6rlkviEB76co20TGfoOOkug5i9tFr0fiaC10KF5QwP22eInG8H1EPnddlYGEyu24uQDo3Vs4TmWOCJUYzBO2jgvE1HbxSMJ5otWhuidjOXKWgppFcryoOyeSa4232hMxlaQ3qOsiLSgrJ0Q+Z50uyDV+jl75AJgn+sd8dIrQzVxmMhIxkh6aoxvOvMa5DoX0aDWDIwqATkyT9fU\/EPvogOH+PEPhQiOcT8QqMUlnzIRE4VNJMox3gvxlex2\/7mMlet0IFdSZHJXmkz2sn+DkRP9LTiGtUuMGE0M4TFyPbNNqihbK\/3hTwqSpMnRLkAx5GylxJIX20ODHe76e7LcSFLt2vjH5Nvmm0ha4BkO63qWt4L66gXiMXVBJvuTqTbwvJUe\/EHiHcWzPJmv14zFyCPjIxwVdchGwQMpLrt+nwXggYqnXAopJMJZk1BhgGIr2DRsZF\/+NmOyOulnIQ2uHtIphpdNVN3WjfJjEmSe2W6fXei+cJGYPQxrhGq15IHz3hpKhPXZIZ\/UZRsbTUbh8x0yjKdw5lgQYgurLiqSxodIU+LeMH\/kOfLfWrrb8eiNjZ2muBvwb97XASKR20Ll7uWbc+0n\/J5Fqm0Q5WQmZy\/DZzQkbXXnDmbBY01eWriNlHE1y4\/wAa+6bpBsUrY4QymYoDplGp+cqVWQYkkeAh0kVC113awUCbSbsXrWgqRsjvX5BxcY7HyDC7vRPLcsd1zhu5VtQoD2rFpEueUX1GN10hdIvR4Iiv060233KLkD76LPTXkMWUTY8khR0tJvUpbWYa1WYbXgx1E6kIObXtLGkmBMsIr50F3okNAgJwHiH7aFG4LtsjY3rzT8jKqD59BN7xbVNegUWM7Y5OyPinDjt\/QTXcTbSryWWIUYc+LBrO2EMF+4hXDwhZ\/2qc6mXr89eMhAxvYhptoTHJYAxtPyo\/QXTDv58xmVwpaHSI5mxWo1Bq+BCC8aOieWwe9K7ISU7JIq5pvJ+63usbmUY7gDAzXvjPpaEG9vSGr4XWz0RJOJlJMWLjIrhIHyFn4HneSX+4Jn1ETaNnXr8pNTk6NJugd+PXQnO5KFWfmTwQsdcXhf0amNjqmXT941riRzGYRtedUlYAaBFOpd7AnDQju6nu0lxvolm6ihGLZ08q7MEvtPPEOfSETOUuOxHEZiKUUv65aJ\/WlNXfEROlqoIkFD+i645Kj2fVEM+mUaNvXr8x1iZZF1A6uRgNGgk0+9VA3W88rvYtVbSPBKhuH11vrpEIMR2XSpmWEyQzIUktNmON9Eynkn4ciBivJ9YdnaeyPtJ\/Cb7mJOmzLLJ0e2VsbTrT6Pu6o8xXQMw+OjH\/6CxV9ZGJ5U\/DvpTI5I7O5WoSHAbi3D58UTeC42uF4\/3nqbaellqkfulNBCVi+CzByceFIgGPc5ME17JxRV4psI\/Ky4LQDrhFIDrdlNebxoL6OclFfg4NGt0iu7V8+iJ9vDapYB9V8fvpNOyr54IWB1kBCZfiGgm66JumMZGIKxKHXFVZgyaUoTsfIyGzRkSNitED4SmFLGh0u62t5OKI6CM1IeX3mBXauTQX9Huj0fCLiEVVtXH7gRB5iOmjUQVbuYI+0hvl7lclcu+6TztQuweLlp7F9FGFPdRqGRe5R7q3S8RVO\/F6OguczLiJ3SDw99ZTiumjKmOt09omD94PSP0xPUIeRo7MJPT9hCTcFnSxb8a6G+x8sWL2UZUcRuXto\/slnga+T+b8p7tHx9Rppktx6YI3NOVrULWdoWaheSPKjfy1u0VZrDr6iTnr9wXaZOAyweFEHT9L9vCx9VWF7KNFFX30V+0jg2BeuxtQzgGYmYg44HI6O6+Hl4mFkH0E+qj89JS\/aB9RusWL2RtKtAyS1zkZ49fx6\/j3dZzAQXWAtZ2x903I7tdpZ3Uh+2iRVFDR5+wjpH\/oO38dxab4nulNxiAJr90NyLAMy7QtEw7LpFeTDm1u\/bSO8r43fc\/IpqgK6aPot5I+Omkfmb90EkY2xduezvzgXXaW3mvQrbCJZrNwdiSnuzd10sz0kZB99JRUcGFP20duYseaM+ZZW9Qp7sIbgFyZ6e2uBNhHV82JIg9ruxwI\/QaYhNmaq+0KDyF\/LZJmHxkz9pnodkUufEq8ycjjNGUTtPJAv\/YgcrTwsml336OVAU4bfzBtm0DptvEj5G\/+DQTJ7oRT\/hNIevlAQ0N4HH3UGXCFhNbUTqYpFpj89IKtohL116rGj3TbsmwzO+EnquHiTIijkCTBfDvkaday6lw6H+xZdkumuO\/PXyskWrPuwQhDpk6MhGBH1yy8o4KuFT\/yCB5jPIGCJ7SG2Ypkc+tR0m2vdjpAvdLqsKsBj5XA04zhyRK4Jhhnn\/sO\/bVC0CDw\/ffR5t1GHiYJ3ktEKOavVbOPmL+mdKK0gLJX2BUwdiRH21t\/odn38zLDY9HHoXNC+HNRoF97FH0EqKa5KwJI+9iXCMH5R5LiR\/pO76WD+7\/dQG33X+6TB7KPBBCzj2TFj9StEEeJ6+7MxaYbl9w33Yfx10SwRTZRfEpI+TQtJ+NHmbigKfhqzGljxOU3xG0KdHzt7wiSIyJHleyj4FSGpV6QOoLxdAiWvAKCxIaQf8Z3r45AH02auF5KEpaIHKEqOYxO74SjB\/1Y09fztIOLHALuvzec34e3VgiyHbrm1necS9e33StC+qjSmtgzOyqp7lsQDLJVIUrfDwO\/vPZrBqjv9l2n77ru3bsLgojqo\/JxyODsvJHdV\/YPmaYPxc31UctDIKaPqszzF9q5tOXOEdNHuIK\/1uqjv4CYPqqyDvK8fdRy\/wjFIVv76AHYnby\/OToIPaHFcv+Cll+aGuccepxzmLphGB+6JyJHSrX40cl5tZJB+SwXSGVttndVF2pOiTWNndlltxk\/ujor\/GIalkkx+EGxTNuxHQfK\/tV1B64HZeB+P7veoJ8Wd\/3iHZ+B7+ec02D4Pg2ns\/3bbIRneISHULb3IcZjNtGCTk1I6wkek\/FrguHYu0zoROc04xy7wmX7m2JmvMVPMSKGqqXE0FzHsAY7wrZt05oR37To5CP4gZ3QjDm4u3hp8Txv7Xtr7+UbyhqK971+WXvQhiFtxZ37NIB7mHME4XA2g7bdO4fhL7TnGG+vcI5oy0IjHh4sXdbDgl8nAIGC6YVVJniUS8iZ0jKkJ9wDTjap5ATLc7J4d0wwxgRDm+FXaDY8IXRaFJWm43M8CkfDrAyhOWn7QUmbEY53eklvoCVyeIEX4hi3\/+zSo\/+8Wxx4+Y6xDCPnpCrwiFhbfC40daEtVFpL79riqbdC6uqrh1CPXxUVrZYKipASweXr3wqu8MNSUdAK+jyF7qvH+j6oprUUGu6L2JH+kN6FxkMDDI0ILUgbk77mXCZ5CaEJ34Kc0\/PhCN59UCYv37z4HmjynBNUUh\/K8\/6darIU0GxMqdEb9Mh5QD\/TjWMzzq7dD\/iVFn\/S7mjvCg2ramjR631CWTxB9wVXaOvoCa2+EIpUZblSnlYK9IBQ0rbKzr8LE6rNkf58GQhkkrdhXkPuzN56ZC5utpaWlpaWlpb7ptP5H5EOHZP+xo+bAAAAAElFTkSuQmCC\" y=\"-2.5\"><\/image> <\/g> <\/svg><\/span><br \/> <\/p>","options":["<span class=\"math-tex\">$\\left( 0;3 \\right)$<\/span>","<span class=\"math-tex\">$\\left( 0;+\\infty \u00a0\\right)$<\/span>","<span class=\"math-tex\">$\\left( -3;0 \\right)$<\/span>","<span class=\"math-tex\">$\\left( -1;1 \\right)$<\/span>"],"correct":"1","answer":"<p>Hàm s\u1ed1 \u0111\u1ed3ng bi\u1ebfn trên các kho\u1ea3ng <span class=\"math-tex\">$\\left( -\\infty ;-3 \\right);\\left( 0;3 \\right)$<\/span><\/p><p>(\u0111\u1ed3 th\u1ecb hàm s\u1ed1 \u0111i lên)<\/p>","type":"choose","user_id":"108","test":"0","date":"2020-03-17 11:19:35"},{"id":"369","test_id":"247","question":"<p>Trong các hàm s\u1ed1 sau hàm s\u1ed1 nào \u0111\u1ed3ng bi\u1ebfn trên <span class=\"math-tex\">$\\mathbb{R}$<\/span> ?<br \/> <\/p>","options":["<span class=\"math-tex\">$y=\\frac{x-1}{x+2}$<\/span>","<span class=\"math-tex\">$y=-{{x}^{3}}-x$<\/span>","<span class=\"math-tex\">$y=\\frac{2x-1}{x-1}$<\/span>","<span class=\"math-tex\">$y={{x}^{3}}+3x$<\/span>"],"correct":"4","answer":"<p>A, C có TX\u0110 khác R nên lo\u1ea1i A, C<br \/>Xét \u0111áp án D:<br \/><span class=\"math-tex\">$y’=3{{x}^{2}}+3>0$<\/span> <br \/>V\u1eady hàm s\u1ed1 \u0111\u1ed3ng bi\u1ebfn trên R<\/p>","type":"choose","user_id":"108","test":"0","date":"2020-03-17 11:22:23"}]}