Toán lớp 12 - Đề kiểm tra 15 phút - Toán lớp 12 - Tháng 12 - Số 1
{"save":1,"level":1,"time":"15","total":10,"point":5,"segment":[{"id":"345","test_id":"243","question":"<p>G\u1ecdi l, h, r l\u1ea7n l\u01b0\u1ee3t là d\u1ed9 dài \u0111\u01b0\u1eddng sinh, chi\u1ec1u cao c\u1ee7a hình nón. <span class=\"math-tex\">${{S}_{xq}}$<\/span> c\u1ee7a hình nón là:<br \/> <\/p>","options":["<span class=\"math-tex\">$\\frac{1}{3}\\pi {{r}^{2}}h$<\/span>","<span class=\"math-tex\">$ \\pi rl$<\/span>","<span class=\"math-tex\">$\\pi rh $<\/span>","<span class=\"math-tex\">$ 2\\pi rl$<\/span>"],"correct":"2","answer":"<p>Công th\u1ee9c tính di\u1ec7n tích xung quanh hình nón:<\/p><p><span class=\"math-tex\">$V=\\pi.r.l$<\/span><\/p>","type":"choose","user_id":"108","test":"0","date":"2020-03-15 21:12:44"},{"id":"346","test_id":"243","question":"<p>Trong không gian cho <span class=\"math-tex\">$\\vartriangle ABC$<\/span> vuông t\u1ea1i A có AB = a, AC = a<span class=\"math-tex\">$\\sqrt{3}$<\/span>.<\/p><p>Tính \u0111\u1ed9 dài \u0111\u01b0\u1eddng sinh c\u1ee7a hình nón sinh ra khi quay <span class=\"math-tex\">$\\vartriangle ABC$<\/span> xung quanh c\u1ea1nh AB.<br \/> <\/p>","options":["<span class=\"math-tex\">$ \\sqrt{3}a $<\/span>","<span class=\"math-tex\">$2a $<\/span>","<span class=\"math-tex\">$ a $<\/span>","<span class=\"math-tex\">$ \\sqrt{2}a$<\/span>"],"correct":"2","answer":"<p><span class=\"svgedit\"><svg height=\"300\" width=\"400\" xmlns:xlink=\"http:\/\/www.w3.org\/1999\/xlink\"> <g> <title><\/title> <rect fill=\"#fff\" height=\"302\" id=\"canvas_background\" width=\"402\" x=\"-1\" y=\"-1\"><\/rect> <g display=\"none\" height=\"100%\" id=\"canvasGrid\" overflow=\"visible\" width=\"100%\" x=\"0\" y=\"0\"> <rect fill=\"url(#gridpattern)\" height=\"100%\" stroke-width=\"0\" width=\"100%\" x=\"0\" y=\"0\"><\/rect> <\/g> <\/g> <g> <title><\/title> <image height=\"295.99998\" id=\"svg_1\" stroke=\"null\" width=\"399.00001\" x=\"-0.5\" xlink:href=\"data:image\/png;base64,iVBORw0KGgoAAAANSUhEUgAAARMAAAEMCAIAAABoS8WhAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABw4SURBVHhe7d0HVFTnuj5wFI3+9ebYaBJLIstu1IiJ5arHklhiSWwxHr22HFvUa8vRaOwYlaIIoqAiiogBo2IEC4qKAooNpQhBEASlifTOwPh\/E97kmsmH4jgDM7Of3zori2czgZyZ\/cz37c2eb+u9AIA3h+YAKAPNAVAGmgOgDDQHQBmSa055eXl4ePiVl1y9ejUwMDA0NDQ3N5cfBPA6kmtOWVnZ9evXZ86cWbduXT09vXr16n322Wc9evTQ19dv0KDBnDlzMjIy+KEAlZPobO3SpUuNGzem5rRv3z4+Pp5Gmy+\/\/LJWrVrUnzVr1tC4xI8DqIREm3PgwAEac6gqY8eOLS4upi22trZUG+pSv379MOzAa0mxOTRhmzt3bsUIY2lpSVtokNmwYUPt2rXRHKgiKTbn2bNnvXv3ppLQhM3Pz4+20GyNjnaoS1SelStXYrYGryXF5ty+fdvY2Jia07lz58TERNri6uraoEEDak6fPn3osKfiYQCvIMXmODs7VxzkjB49mlq0cePGpk2bNm\/e\/D\/\/+U9KSgo\/COCVJNccOsj55ptvKiZmNPI0adKEvqDJW1BQED8CoAok15y0tLSPP\/6Ypmo0zly7dk0mk+3Zs+fdd99t2LDh+vXrK86zAbyW5JoTHBxsZGREzenevXtycjJtKSgoGDVqFI1CVB5PT8+KhwG8muSas2\/fvoqDnClTptCAQ1vKy8tnz55NW8i0adNoOlfxSIBXkFZzqBUzZ86khtSpU8fBwaFiY0lJydixYyuaQ19U1Ang1aTVnNTUVHNzc5qqNWvWLCAgoGJjbGxsu3btaGPt2rV\/+OEH\/DEHqkJazQkKCqLOUEk++uijioMc6omFhQUNQbSxZcuWd+7cqXgkwKtJqDlUkk2bNunr69OsbOrUqTQrS0lJ2bhxY6NGjag2jRs3PnjwID8U4HUk1Jz58+c3bdqUSkLNqV+\/PhWmXr16TZo06dKly6xZs4KDg\/lxAFUgrdkagKqgOQDKQHMAlIHmACgDzQFQBpoDoAw0B0AZaA6AMtAcAGWgOX+VlfXC3PzF8OEv8FkDeCU0568OHnyhp\/fb\/0JDeQuACJrzV1FRhe\/8v8e1Gt27Fs1bAETQHEU7NpwbN9S5UyeHoiJ8xA0qheYo2r79+pIl5yZM8Fy27DxvAvgbNEfRzp03Fi06m55eYGpqc+UKVi0EMTRH0a5dN7\/91oe+8PGJbt3aNicH60iBAJqjyNHx9ty53hVfz5lzesYMr4qvAV6G5ijat+\/ON9\/8UvF1Xl6JmZmdl1dURQT4E5qj6MCBkJfHmcDABGNj69TUPM4Av0NzFLm63p869QSH333\/\/cXRo4\/K5XLOAGjO3x05Ejp58nEOvyspKevWzZHGIs4AaM7feXiEf\/XVMQ5\/CA9PMzCwjIvL5AySh+Yo+vnnB+PGeXB4ibV1UP\/+LmVlWAEUfoPmKDp5MvKLL37i8BLqDDWH+sMZpA3NUXT69K+jRrlz+CuardGcLSwslTNIGJqj6MyZh8OHu3H4mwMHQrp1cywuxsWgUofmKPL1jf3ss8Mc\/kYul48Zc\/T77y9yBqlCcxT5+T0aNOgQB5HU1DwTE+vAwATOIElojqIrV+IHDHDhUAkvrygzM7u8vBLOID1ojqKAgIT\/\/u8DHCo3Y4bXnDmnOYD0oDmKrl9P7NVrP4fK5eQUt25t6+ODD11LFJqj6ObNpz177uXwSjSvMzW1SU8v4AxSguYouns3+aOPnDi8zrJl5ydM8MTFoBKE5ii6fz\/lww\/3cHidoiJZ58673dywxJTkoDmKIiLSOnXiG75XRUhIsoGBZWJiNmeQBjRHUVRUert29hyqZvPmq0OGuJaXY84mIWiOoocPn5uZ2XGoGpmsvHfv\/XZ2uEevhKA5iuLiMt9\/35ZDlcXEZNCcLTLyGWfQdWiOooSE7BYttnN4E46Ot83N95aWYil3SUBzFD19mtO8uQ2HNyGXy4cPd1u\/\/gpn0GlojqLU1DxDQysObygpKdfIyOrmzaecQXehOYrS0wuaNt3G4c15eka0b7+roKCUM+goNEdRVlZRo0ZbOSjlX\/86vnDhGQ6go9AcRbm5xQ0b\/shBKZmZhS1abL9wIZYz6CI0RxFNtOrXt+CgLKpNy5Y7qEKcQeegOYpKSsrq1t3E4S3QhI2mbRxA56A5isrKymvV2sDhLdDY1a6dvadnBGfQLWiOIrlcrqe3QSUXod28+dTIyCopKZcz6BA0R0Bff6OqLgVYt+7yiBFH8AEe3YPmCLzzziZV3V6XGtiz515Hx9ucQVegOQINGmzOz1fZujaRkc+aNbN8+PA5Z9AJaI7Au+9uyc4u4qAKO3fe6NPHWSbDau66A80RaNx4a0aGKv8UU14uHzLE9ccfr3EG7YfmCBgYWD57ls9BRRITsw0NrUJCkjmDlkNzBIyNrZOTVX8q2c0ttFMnB1Wde4CaheYIvPfe9idPcjiojlwuHz\/ec\/lyX86gzdAcgVatdsTHZ3FQqfT0AlNTG3\/\/eM6gtdAcgQ8+2Bkbm8FB1Xx8olu3ts3JKeYM2gnNEWjb1j46Wo1\/fpkz5\/SMGV4cQDuhOQIdOux68ECNq9jk5ZW0abPTyyuKM2ghNEegc+fd6r4ZaGBggomJdVqais99Q7VBcwS6dXO8dy+Fg9p8\/\/3FMWOO4mJQLYXmCPTo4XT7dhIHtSkpKaOKHjgQwhm0Cpoj8Mkn+4KDn3BQJ5oTGhhYxsVlcgbtgeYI9OnjXG030LWyChwwwKWsDBeDahk0R6BfvwNXrz7moGbUmf79XaytgziDlkBzBAYOPHj5chwH9aPZGs3Z1H02D1QLzREYMsS1mldLc3a+262bY0kJVnPXGmiOwLBhbufOxXCoFnK5fPToo6tW+XEGjYfmCHz++RFv7+q+XXtqap6JiXVQUCJn0GxojgC9\/Z86VQOXxpw8GWlmZpeXp7IlEEB90ByBsWM9TpyI5FC9pk\/3mjvXmwNoMDRHYMIEz5pamzM7u6h1a9szZx5yBk2F5ghMmvTz0aNhHKrdlSvxpqY26ekFnEEjoTkCU6accHML5VATli07T+MeLgbVZGiOwLRpJw8evMehJhQVyTp1cjhypCbbC6+G5gjMmnXK2fkuhxoSEpJsaGiVmJjNGTQMmiMwe\/ZpJ6eaXwl68+arQ4a4quSuCqByaI7AvHneu3ff4lBzZLLy3r3329kFcwZNguYILFx4xt5eI\/bXhw+fN2tmGRmpxkURQDlojsDixed27LjOoabt2XOrZ8+9qrqfD6gKmiOwbNl5zfnAjFwuHz7cbf36K5xBM6A5AitWXNi2LYCDBkhKyjUysrp58yln0ABojsCqVX6bN1\/loBk8PMLbtbMvKCjlDDUNzRFYu\/byxo3+HDTG5MnHFy06ywFqGpojsGHDFSoPB42RmVnYosX2av6wKlQGzRGwsLi6erUmfjyTakPloQpxhpqD5ghs3RqwcuVFDhpmwYIz\/\/rXcQ5Qc9AcASurQI29P1RBQWm7dvY19fEh+BOaI7B9+\/UlS85x0Dw3bz41MrJSx\/0YoerQHAE7u+CFC89w0Ejr1l0eMeIIPsBTg9AcAQeHm\/Pn+3DQSKWlZebmex0da\/6CbslCcwScnG7PmXOag6aKjHzWrJllTIy67soIr4bmCOzff3fWrFMcNNjOnTf69HGWybCaew1AcwRcXEKmT9eC+3iWl8sHDz7044\/XOEM1QnMEDh++P3XqCQ6aLSEh28DAMiQkmTNUFzRHwN097Ouvf+ag8ajnnTvvLiqScYZqgeYIeHpGTJx4jIPGk8vl48d7auyfbnUVmiNw\/PiDsWM9OGiD9PSC5s1t\/P3jOYP6oTkCXl5RY8Yc5aAlfHyiW7e2zckp5gxqhuYIeHtHjxzpzkF7zJ59euZMLTiZrhvQHIGzZx8OG+bGQXvk5ZW0abOzRu5fIkFojoCvb+ynn7py0CqBgQkmJtZpafmcQW3QHIFLl+IGDTrEQdusXHmRDtJwMai6oTkC\/v7x\/fu7cNA2xcWyrl33uLiEcAb1QHMEaM7Tt68zBy0UFpZqYGAZH5\/FGdQAzRG4cePJJ5\/s46CdrKwCBwxwKSvDxaDqguYI3Lr11Nx8LwftRJ2hCafmrFSqe9AcgZCQ5O7dHTlorbi4TJqzhYencQaVQnMEQkNTu3TZzUGbOTvf7dbNsaQEq7mrHpojEBGR1rGjAwdtJpfLR48+umqVJq4dp+3QHIFff01v29aeg5ZLTc0zNrYOCkrkDCqC5gjExGS0abOTg\/Y7eTLSzMwuL6+EM6gCmiMQH5\/VurUtB50wfbrX3LneHEAV0ByBxMTs997bzkEnZGcX0XvBmTMPOcNbQ3MEkpJyTUysOeiKy5fjTE1t0tMLOMPbQXME0tLyDQ2tOOiQpUvPT5jgiYtBVQLNEXj+vKBJk20cdEhRkaxTJ4cjR0I5w1tAcwToqOAf\/9jCQbfcvZtMwykdyHEGZaE5Anl5JQ0abOagcywsrg4Z4lpejjnbW0FzBAoLS+vVs+Cgc2Sy8t6999vbB3MGpaA5AqWlZXXqbOSgix4+fG5gYBkVlc4Z3hyaI0AzGT29DRx01J49t3r23EvvEZzhDaE5YtQc3T4SkMvlw4a5rV9\/hTO8ITRHjGZrOv9+nJSUa2RkdevWU87wJtAcsXr1LAoLSznoLg+P8PbtdxUU6P7\/U5VDc8QaNvxRIhcXT558fNGisxygytAcsX\/8Y0tWVhEHnZaRUdiixfYLF2I5Q9WgOWJNmmx7\/lwqF0f6+sZSeTIzCzlDFaA5YoaGVpJaY3bBgjNTpmjHbeo0BJojZmJinZSUy0ECCgpK27WzP3YsgjO8Dpoj9t5726V2WWRw8BMjI6vkZAm9X7wNNEesdWvbuLhMDpKxdu3lESOO4AM8VYHmiLVpszMmJoODZJSWlpmb73Vyus0ZKofmiNGk\/9dfpXhBZGTks2bNLCX4rvGm0Byxjh0dIiIkuq6sre2NPn2cZTKs5v4qaI5Yly67Q0NTOUhMebl88OBDW7Zc4wwiaI5Y9+6OISHJHKQnISHb0NDq3r0UzvA3aI4YHShL\/CLiw4fvd+68u6hIxhn+Cs0R69Vr\/40bTzhIklwuHzfOY\/lyX87wV2iOWN++zgEBCRykKj29oHlzG3\/\/eM7wEjRHrH9\/F+wxxMcn+v33bXNyijnDH9AcsUGDDl26FMdB2mbPPj1z5ikO8Ac0R+zTT119ffGRld\/k5ha3abPz1KkozvA7NEds2DC3s2ex8j+jQz4TE2tJfezitdAcsZEj3b29oznAixcrV1784oufcDHon9AcsTFjjnp5YX7yf4qLZV277nFxCeEseWiO2LhxHsePP+AAvwsNTTUwsIyPz+IsbWiO2MSJxzw8wjnAHywtAwcMcMFq7gTNEfv665\/d3cM4wB\/Kysr793exsQniLGFojtjUqScOH77PAV7y6FEmzdnCwyX6EYw\/oTli06d74Wi4Mvv33+3WzbGkRNKruaM5YrNmnaL9gwP8lVwuHz366OrVfpwlCc0RmzPntKMjPo5fqdTUPGNj66CgRM7Sg+aIzZ\/v4+BwkwOInDwZaWZmJ5HVt\/8OzRFbtOisnR3uB\/ga06adnDvXm4PEoDliS5ac2779OgeoRHZ2UatWO6R5gR+aI7Z8ua+VVSAHqNzly3GmpjbSWb3+T2iO2MqVF7duDeAAr7R06fmJE49J7WJQNEds9Wo\/C4urHOCVCgtLO3Z0OHIklLM0oDli69Zd3rABd5+tqrt3kw0NrZ48yeEsAWiO2MaN\/mvWXOIAVUBD9KefukrnYlA0R2zz5qurVkn6b+RvSiYr79Vrv729VE7lozli27YFrFhxgQNUTXT082bNLKOiJLGSPZojZm0dtGzZeQ5QZbt33+rZc29pqe5fDIrmiO3YcX3x4nMcoMrkcvmwYW5SOLmC5ojRfH3hwjMc4E08fZpjZGSl86tyozliNOuYN0+iV2S9vZ9+Cm\/ffldBQSlnXYTmiO3de2f27NMc4M19\/fXP\/\/u\/ZznoIjRHzNn5LpaEfRsZGYUtWmy\/ePERZ52D5ogdPHhv2rSTHEApvr6xLVvuyMoq4qxb0BwxN7fQKVNOcABlffutj64+jWiO2NGjYZMm\/cwBlJWfX9K2rf2xYxGcdQiaI+bpGTFhgicHeAvBwU+MjKySk3M56wo0R+zEicixYz04wNtZu\/byiBFHdOwDPGiO2KlTUaNHH+UAb6e0tKxHDycnJ51aSwjNEfPxif788yMc4K09ePCsWTPLmJgMztoPzRE7dy5m6NDDHEAVbG1v9O3rXFZWzlnLoTliFy7EDhniygFUobxcPmjQoS1brnHWcmiO2OXLcQMHHuQAKpKQkG1gYHnvXgpnbYbmiF29+rhfvwMcQHVcXe936bK7qEjGWWuhOWKBgQl9+jhzANWRy+Xjxnl8950vZ62F5ogFBz\/5+ON9HEClnj3Lb97cxt8\/nrN2QnPEbt9O6tHDiQOomrd39Pvv2+bkFHPWQmiOGB3FduvmyAHU4N\/\/\/mXWLC3+HAeaIxYWltq5824OoAa5ucUffLDz1CltvXU+miP24MGzDh12cQD1uHbtsYmJdVpaPmetguaIRUc\/b9vWngOozYoVF7744idtvBgUzRGLjc2guQQHUJviYlnXrnsOHrzHWXugOWKPH2e1arWDA6hTaGiqgYFlfHwWZy2B5og9eZJjamrDAdRs27aAf\/7zoHat5o7miCUn5xobW3MANSsrK+\/X74CNTRBnbYDmiD17lk9TCA6gfo8eZdITHh6exlnjoTliGRmFjRtv5QDVYv\/+u927O5aUaMdq7miOWHZ20bvvbuEA1UIul48a5b56tXbctgjNEcvPL2nQYDMHqC4pKXl0eBkUlMhZg6E5YkVFsnfe2cQBqtGJE5FmZnZ5eSWcNRWaIyaTlevrb+QA1WvatJOafyMJNEeM5tx6eht0bIkwbUEHma1a7Th79iFnjYTmVKpWrQ06s1CL1rl0Kc7U1Ob58wLOmgfNqVTdupu05QypTlqy5NzEicc0dthHcypVv76Fbt91TMMVFpZ27Ojg7h7GWcOgOZVq2PDH3Fwt\/rivDrhzJ8nQ0OrJkxzOmgTNqVSjRlszMws5QA3ZtMn\/009dNfBiUDSnUk2bbktP19wjVImQycp79dpvbx\/MWWOgOZUyMrJKTc3jADUnOvp5s2aWUVHpnDUDmlMJf\/9E\/caZ63DpmkZwcLj58cf7Sks16FQnmlOJ\/v1f6OmV69X6Z3\/ngQMPDhp0aMgQ188+OzxsmNuIEUc+\/\/zIqFHuY8Yc\/fLLn8aN8xg\/3nPixGOTJv08efLxKVNOTJ16Ytq0kzNmeM2aderf\/\/5l9uzTc+d6z5\/vs2DBmUWLzi5efG7JknPLlp3\/7jvfFSsufP\/9xVWr\/H744dLatZfXr7+ycaM\/zew3b766Zcu1bdsCrKwCra2Dtm+\/bmt7w84ueNeum7QP7dlzy8np9r59d5yd7x44EHLw4D1X1\/tubqHu7mFHj4Z5eIQfOxZx\/PiDkycjvbyifvnlV2\/v6DNnHp47F+PrG3vhQqyf36PLl+P8\/eOvXXscEJAQFJR448aTmzef3r6dREfkISHJ9++nhIWlRkSkPXjwjN7p6S0\/Jibj0aPMuLjMx4+zEhOznz7NSU7OTUnJS0vLpwltRkZhVlZRdnZRbm5xfn5JYWFpcbGM9nKaaNHxiUpOK9MPmdV326\/ter84rSm32kdzKrF2LTUns1sv2sNoP6O97eLFR7Tn0f5HeyHti6dP\/3rqVBTtnbSP0p7q6Rnx00\/htO\/SHkz78aFD91xcQmjPpv2b9nLa13fvvkX7Pe391AFqgo1NELWCukENoZ5YWFylzlBzqD\/UotWr\/ahR1CtqF3Vs6dLz1DdqHXWPGjhvnvecOacr1iujfk6f7vU\/\/3OSGku9pfZ+9dWxCRM8qc\/Uauo2NXzkSHdqO3Wemk\/9Hzz4EL0XDBjg0q\/fgb59nfv0caYDCXpHNzff+9FHTt27O3btuqdLl92dOjl06LCrfftdbdvam5nZffDBztatbVu12tGixXZTUxsTE2uazRoaWtE8qkmTbY0abX333S3\/9V8\/NmiwuX59i3fe2VSnzsbatTfUqrVBT++3f+rrb6QttJ2+S4+hR9Lj6d+if5d+Av0c+mn0M+kn08+n30K\/i34j\/V767fTfQP8lvg0\/\/O29rG1bfoEql5+f7+3tvWbNmnnz5q1du\/b8+fPZ2dleXl7x8apcVRTNqQS9Uz5+\/KJE06871Hw0XNDIQ+NPSUkZjUU0ItG4RKMTjVE0UtF4RaMWjV00gtE4RqMZjWk0stH4RqMcjXU04tG4R6Nf6rzl1JwXX3zBP1ckNzfXxsamVatWDRs2nDBhwtatW2fPnt2kSRN9ff2OHTsmJCTw41QBzQEtIZO98PF5kV7peYKIiIgBAwbUrl27TZs2fn7\/9yGfX375pWnTpiNGjCgoUOWZUjQHdMG9e\/doVKlVq5axsfHLtSHFxcVfffXV8uXL6aiLN6mC1JuTlZXl7u6u2ncjqGbJycn9+vWj2tSpU2f9+vV\/b8jOnTsPH1bxvSsl3ZyysrJ169YNHTqUjiB5E2gb6gm9iNQZPT29Dh06xMbG8jdeEhYWFhMTw0FFJN0cmgHT4eOwYcPy87VyaWMg0dHRbdu2pdrQEc6yZctUOyV7Bek2h57xLl260BA\/evToEpxD01pOTk5169al5jRu3PjixYu8Vf0k2py8vDw6aqTakPHjx9O0jb8BWkUmk02ePJleRGpO165dk5KS+BvqJ8Xm0IBuZWVlampa0ZwpU6agOVrq+fPnffv2pdrQ6\/jll19W59xBis3x8\/MbOnTod999p6+vT8\/4N998g+ZoqadPn3744YcVzVm4cGG1HeQQyTXn8ePHw4cPP3\/+\/KZNm+iYkp7xBQsWVOczDipEzaGD1YrTA6tXr0Zz1KWgoGDu3Lk0VaP58YoVK+jpJir\/GxlUm6ysrAEDBlQ0pzpPrBFpNWfPnj0zZszIy8ujp\/jbb7+lAYee8TVr1qA5WopeuMWLF9OLSC\/lmDFjioqK+Bt\/iIqKUtMJNwk1Jygo6JNPPnF3dw8ICLh27dqoUaMqmmNhYcGPAC0UGBhobGxMww79k15Z3vq7mJgYen9U7SXSf5JKc1JSUujwxtzcnMpTwdDQkJqjr69vY4M7TGmxsrKybdu21a9fn17Njh07njhxIjs7OyEhwcHBgSZy\/v7+\/DhVk0RziouLly5dSmPLn+fQ6Itx48ZVNIee4oqNoKXoqNXZ2blVq1b0gtLgQ+hl7devX3CwGlcvkERzXF1dJ02alJmZyfm3BdeLRo4cWfEU05POW0GbFRQU0Ahz6NAhmpCHh4er+9hV95tz586dQYMG3b9\/n\/PvsrKyBg4cSM2pW7euyq+iBSnQ8ebQfJdG7VmzZin8rTM6OtrMzKxizLG3t+etAFWm483p3LkzzX1btmy5f\/\/+ivLQIO7h4TF48GDqDDWHvksVOq0x60KAtpDEcQ6AyqE5AMpAcwCUgeYAKAPNAVAGmgOgDDQHQBloDoAy0BwAZaA5AMpAcwCUgeYAKAPNAVAGmgOgDDQHQBloDoAy0ByAN\/fixf8HFLjoHKbKZ58AAAAASUVORK5CYII=\" y=\"3\"><\/image> <\/g> <\/svg><\/span><\/p><p>Tam giác ABC vuông t\u1ea1i A \u27f9 <span class=\"math-tex\">$BC=\\sqrt{A{{B}^{2}}+A{{C}^{2}}}=2a$<\/span><br \/>\u27f9 <span class=\"math-tex\">$l=BC=2a$<\/span> <\/p>","type":"choose","user_id":"108","test":"0","date":"2020-03-15 21:17:07"}]}